首页> 美国卫生研究院文献>other >The Biomimetic Cardiac Tissue Model (BCTM) Enables the Adaption ofHuman Induced Pluripotent Stem Cell Cardiomyocytes (iPSC-CMs) to PhysiologicalHemodynamic Loads
【2h】

The Biomimetic Cardiac Tissue Model (BCTM) Enables the Adaption ofHuman Induced Pluripotent Stem Cell Cardiomyocytes (iPSC-CMs) to PhysiologicalHemodynamic Loads

机译:仿生心脏组织模型(BCTM)可以适应人诱导多能干细胞心肌细胞(iPSC-CMs)的生理作用血液动力学负荷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provide a human source of cardiomyocytes for use in cardiovascular research and regenerative medicine. However, attempts to use these cells in vivo have resulted in drastic cell death caused by mechanical, metabolic, and/or exogenous factors. To explore this issue, we designed a Biomimetic Cardiac Tissue Model (BCTM) where various parameters associated with heart function including heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and ratio of systole to diastole can all be precisely manipulated to apply hemodynamic loading to culture cells. Using the BCTM, two causes of low survivability in current cardiac stem cell therapies, mechanical and metabolic, were explored. iPSC-CMs were subject to physiologically relevant mechanical loading (50 mmHg systolic, 10% biaxial stretch) in either a low- or high-serum environment and mechanical loads were applied either immediately or gradually. Results confirm that iPSC-CMs subject to mechanical loading in low-serum conditions experienced widespread cell death. The rate of application of stress also played an important role in adaptability to mechanical loading. Under high-serumconditions, iPSC-CMs subject to gradual imposition of stress were comparable toiPSC-CMs maintained in static culture when evaluated in terms of cell viability,sarcomeric structure, action potentials and conduction velocities. In contrast,iPSC-CMs that were immediately exposed to mechanical loading had significantlylower cell viability, destruction of sarcomeres, smaller action potentials andlower conduction velocities. We report that iPSC-CMs survival underphysiologically relevant hemodynamic stress requires gradual imposition ofmechanical loads in a nutrient-rich environment.
机译:诱导多能干细胞衍生的心肌细胞(iPSC-CM)提供了人类的心肌细胞来源,可用于心血管研究和再生医学。然而,尝试在体内使用这些细胞导致由机械,代谢和/或外源性因素引起的细胞急剧死亡。为了探讨这个问题,我们设计了一个仿生心脏组织模型(BCTM),其中与心脏功能相关的各种参数包括心率,收缩压峰值,舒张末期压力和体积,收缩末期压力和体积以及收缩与收缩的比率舒张期都可以精确地控制以向培养细胞施加血流动力学负荷。使用BCTM,探讨了目前心脏干细胞疗法中机械生存和代谢下降的两个原因。 iPSC-CM在低血清环境或高血清环境中均受到生理相关的机械负荷(收缩压50 mmHg,双轴拉伸10%),并且立即或逐渐施加机械负荷。结果证实,在低血清条件下承受机械负荷的iPSC-CM经历了广泛的细胞死亡。应力的施加率在对机械负载的适应性中也起着重要作用。高血清下在逐渐施加压力的条件下,iPSC-CM与根据细胞活力评估,iPSC-CM保持在静态培养中,肌节结构,动作电位和传导速度。相反,立即受到机械负载的iPSC-CM具有明显的较低的细胞活力,肉瘤的破坏,较小的动作电位和较低的传导速度。我们报告说iPSC-CM在生理相关的血流动力学压力需要逐渐施加营养丰富的环境中的机械负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号