首页> 美国卫生研究院文献>other >Model Polymer System for Investigating the Generation of Hydrogen Peroxide and its Biological Responses during the Crosslinking of Mussel Adhesive Moiety
【2h】

Model Polymer System for Investigating the Generation of Hydrogen Peroxide and its Biological Responses during the Crosslinking of Mussel Adhesive Moiety

机译:用于研究贻贝胶粘剂部分交联过程中过氧化氢的产生及其生物学响应的模型聚合物系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mussel adhesive moiety, catechol, has been utilized to design a wide variety of biomaterials. However, the biocompatibility and biological responses associated with the byproducts generated during the curing process of catechol has never been characterized. An in situ curable polymer model system, 4-armed polyethylene glycol polymer end-capped with dopamine (PEG-D4), was used to characterize the production of hydrogen peroxide (H2O2) during the oxidative crosslinking of catechol. Although PEG-D4 cured rapidly (under 30 seconds), catechol continues to polymerize over several hours to form a more densely crosslinked network over time. PEG-D4 hydrogels were examined at two different time points; 5 min and 16 hrs after initiation of crosslinking. Catechol in the 5 min-cured PEG-D4 retained the ability to continue to crosslink and generated an order of magnitude higher H2O2 (40 μM) over 6 hrs when compared to 16 hrs-cured samples that ceased to crosslink. H2O2 generated during catechol crosslinking exhibited localized cytotoxicity in culture and upregulated the expression of an antioxidant enzyme, peroxiredoxin 2, in primary dermal and tendon fibroblasts. Subcutaneous implantation study indicated that H2O2 released during oxidative crosslinking of PEG-D4 hydrogel promoted superoxide generation, macrophage recruitment, and M2 macrophage polarization in tissues surrounding the implant. Given the multitude of biological responses associated with H2O2, it is important to monitor and tailor the production of H2O2 generated from catechol-containing biomaterials for a given application.
机译:贻贝粘合剂部分邻苯二酚已被用于设计多种生物材料。然而,与邻苯二酚的固化过程中产生的副产物有关的生物相容性和生物反应从未得到表征。使用原位固化的聚合物模型系统,用多巴胺封端的4臂聚乙二醇聚合物(PEG-D4),表征了邻苯二酚的氧化交联过程中过氧化氢(H2O2)的产生。尽管PEG-D4快速固化(在30秒以下),但儿茶酚在数小时内继续聚合,形成随时间推移更致密的交联网络。在两个不同的时间点检查了PEG-D4水凝胶。交联开始后5分钟和16小时。与16小时固化的样品停止交联相比,在5分钟固化的PEG-D4中,邻苯二酚保留了继续交联的能力,并在6小时内产生了更高数量级的H2O2(40μM)。邻苯二酚交联过程中产生的H2O2在培养中表现出局部细胞毒性,并在原代皮肤和肌腱成纤维细胞中上调抗氧化酶Peroxiredoxin 2的表达。皮下植入研究表明,PEG-D4水凝胶的氧化交联过程中释放的H2O2促进了植入物周围组织中的超氧化物生成,巨噬细胞募集和M2巨噬细胞极化。考虑到与H2O2相关的多种生物反应,对于给定的应用,监测和定制从含邻苯二酚的生物材料中产生的H2O2的生产非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号