首页> 美国卫生研究院文献>other >Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity
【2h】

Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity

机译:长期微重力下人类原代巨噬细胞的细胞骨架稳定性和代谢改变

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment) experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC–TOF–MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface–bound fucose. The reduced ICAM-1 expression and the loss of cell surface–bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small and non-significant cytoskeletal alterations represent a stable “steady state” after adaptive processes are initiated in the new microgravity environment. Due to the utmost importance of the human macrophage system for the elimination of pathogens and the clearance of apoptotic cells, its apparent robustness to a low gravity environment is crucial for human health and performance during long-term space missions.
机译:免疫系统是太空飞行期间人体受影响最严重的系统之一。免疫系统的细胞对微重力异常敏感。因此,引起严重关注的是,与太空飞行相关的免疫系统是否减弱最终会阻止人类存在超出地球轨道的范围。对于人类太空飞行,迫切需要了解改变重力影响并改变免疫细胞功能的细胞和分子机制。 CELLBOX-PRIME(微重力环境中的CellBox-人类主要巨噬细胞)实验首次研究了人类主要巨噬细胞中微重力相关的长期变化,人类巨噬细胞是免疫系统最重要的效应细胞之一。该实验是在国际空间站ISS上的美国国家实验室中使用NanoRacks实验室和Biorack I型标准CELLBOX EUE IV型容器进行的。在2014年4月18日/ 2014年5月18日使用SpaceX CRS-3和Dragon太空船进行了上传和下载。令人惊讶的是,相比之下,人类原代巨噬细胞在微重力作用下11天后,肌动蛋白和波形蛋白的细胞骨架均未显示出定量或结构变化。到1g控件。 CD18或CD14表面表达在微重力中均未改变,但是ICAM-1表达降低。通过GC-TOF-MS对细胞培养上清液中的74种代谢产物进行分析,结果发现与1g对照相比,有八种代谢产物的含量明显不同。特别地,细胞培养上清液中游离岩藻糖的显着增加与细胞表面结合岩藻糖的显着减少有关。 ICAM-1表达降低和细胞表面结合岩藻糖的丢失可能导致功能障碍,例如T细胞的活化,先天免疫应答的迁移和活化。我们假设,在新的微重力环境中启动适应性过程后,令人惊讶的小而无意义的细胞骨架改变代表了稳定的“稳态”。由于人类巨噬细胞系统对于消除病原体和清除凋亡细胞具有极其重要的意义,其在低重力环境下的明显坚固性对于长期太空飞行中的人类健康和性能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号