首页> 美国卫生研究院文献>other >Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging
【2h】

Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging

机译:自动上下文卷积神经网络(Auto-Net)用于磁共振成像中的大脑提取

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and robustness of brain extraction, therefore, is crucial for the accuracy of the entire brain analysis process. State-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry; therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent and registration-free brain extraction tool in this study, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3D image information without the need for computationally expensive 3D convolutions, and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue.The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark datasets, namely LPBA40 and OASIS, in which we obtained Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily-oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI) datasets. In this application our voxelwise auto-context CNN performed much better than the other methods (Dice coefficient: 95.97%), where the other methods performed poorly due to the non-standard orientation and geometry of the fetal brain in MRI. Through training, our method can provide accurate brain extraction in challenging applications. This in-turn may reduce the problems associated with image registration in segmentation tasks.
机译:脑提取或全脑分割是许多神经图像分析管道中重要的第一步。因此,大脑提取的准确性和鲁棒性对于整个大脑分析过程的准确性至关重要。最先进的大脑提取技术在很大程度上取决于大脑地图集和查询大脑解剖结构之间对齐或配准的准确性,和/或对图像的几何形状做出假设;因此,当这些假设不成立或图像配准失败时,成功将非常有限。为了在本研究中设计一种准确的,基于学习的,与几何无关的,免注册的大脑提取工具,我们提出了一种基于自动上下文卷积神经网络(CNN)的技术,其中固有的局部和全局图像通过不同窗口大小的2D补丁学习特征。我们考虑两种不同的体系结构:1)基于针对三个不同方向(轴向,冠状和矢状)的三个并行2D卷积路径的体素化方法,隐式地学习3D图像信息,而无需计算昂贵的3D卷积; 2)完全基于U-net架构的卷积网络。由网络生成的后验概率图与原始图像块一起作为上下文信息迭代使用,以学习大脑的局部形状和连接性以从非脑组织中提取出来。与文献中最近报告的两个公开基准数据集LPBA40和OASIS的结果相比,我们获得的Dice重叠系数分别为97.73%和97.62%。通过我们的自动上下文算法,实现了重大改进。此外,我们在重建的胎儿脑磁共振成像(MRI)数据集中提取任意定向的胎儿脑这一具有挑战性的问题中评估了算法的性能。在此应用中,我们的voxelwise自动上下文CNN的性能比其他方法好得多(骰子系数:95.97%),由于MRI中胎脑的方向和几何形状不规范,其他方法的效果不佳。通过培训,我们的方法可以在具有挑战性的应用中提供准确的大脑提取。进而可以减少与分割任务中的图像配准相关的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号