首页> 美国卫生研究院文献>other >The Future of Earth Observation in Hydrology
【2h】

The Future of Earth Observation in Hydrology

机译:地球观测在水文学中的未来

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In just the past five years, the field of Earth observation has progressed beyond the offerings of conventional space agency based platforms to include a plethora of sensing opportunities afforded by CubeSats, Unmanned Aerial Vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically on the order of one billion dollars per satellite and with concept-to-launch timelines on the order of two decades (for new missions). More recently, the proliferation of smartphones has helped to miniaturise sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3–5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist five years ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of the cost of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-meter resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen-scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the Internet of Things as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today’s hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilise and exploit these new observing systems to enhance our understanding of the Earth and its linked processes.
机译:在过去的五年中,对地观测领域已经超越了传统的基于太空机构的平台所提供的功能,包括了CubeSats,无人飞行器(UAV)和智能手机技术所提供的大量传感机会。营利性公司和个人研究人员。在过去的几十年中,航天局的努力已经产生了众所周知的和非常有用的卫星,例如Landsat系列卫星和重力研究与气候实验(GRACE)系统,每颗卫星的成本通常在10亿美元左右,而且其概念到发射时间表的时间大约为二十年(对于新任务)。最近,智能手机的普及有助于使传感器和能量的需求小型化,从而促进了可发射数十枚卫星的CubeSat的使用,同时每天提供对地球的超高分辨率(3-5 m)分辨率的传感基础。五年前还不存在的初创公司现在在轨道上运行的卫星数量超过了任何航天局,其成本仅为传统卫星飞行任务成本的一小部分。随着这些进步,出现了新的星载测量,例如用于跟踪空气污染,暴风雨单元发展,洪水泛滥,降水监测甚至使用运动构造技术构建数字表面的实时高清视频。更接近地面的是,从小型无人机和系留气球进行的测量已绘制出雪深,洪水和亚米级分辨率下的估计蒸发量图,从而突破了时空限制并提供了新的过程见解。在地面上,已经使用安装在手机塔上天线之间的信号衰减来测量降水,而移动设备的普及使公民科学家能够对环境状况进行分类照片,根据电池状态估算每日平均温度并感知其他水文重要性变量,例如使用市售无线设备的信道深度。全球互联网正在通过高空气球,太阳飞机和数百次计划中的卫星发射来实现,从而提供了一种将物联网作为全新的测量领域加以利用的手段。这种全球访问将使从数十亿智能手机或远程研究平台实时收集数据成为可能。未来将产生只能通过云存储访问的PB级数据,并且将需要新的分析方法进行解释。目前尚不清楚水文模型能否有效地吸收如此庞大的数据量。不清楚是因为测量是多余的,不一致的,不够准确的,还是仅仅是因为我们缺乏处理和分析数据的能力,是否会有用地利用这些大量的数据。显而易见的是,这一系列新颖且具有颠覆性意义的传感平台所提供的工具和技术为我们的社区提供了一个独特的机会,以发展新的见解,从而促进水文学的基本方面。要做到这一点,不仅需要技术的应用:在某些情况下,还需要对我们如何利用和利用这些新的观测系统以加深对地球及其相关过程的理解进行彻底的反思。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号