首页> 美国卫生研究院文献>other >Analyzing optical imaging of Ca2+ signals via TIRF microscopy: the limits on resolution due to chemical rates and depth of the channels
【2h】

Analyzing optical imaging of Ca2+ signals via TIRF microscopy: the limits on resolution due to chemical rates and depth of the channels

机译:通过TIRF显微镜分析Ca2 +信号的光学成像:由于化学速率和通道深度而导致的分辨率限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High resolution total internal reflection (TIRF) microscopy (TIRFM) together with detailed computational modeling provides a powerful approach towards the understanding of a wide range of Ca2+ signals mediated by the ubiquitous inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) channel. Exploiting this fruitful collaboration further requires close agreement between the models and observations. However, elementary Ca2+ release events, puffs, imaged through TIRFM do not show the rapid single-channel openings and closings during and between puffs as are present in simulated puffs using data-driven single channel models. TIRFM also shows a rapid equilibration of 10ms after a channel opens or closes which is not achievable in simulation using standard Ca2+ diffusion coefficients and reaction rates between indicator dye and Ca2+. Furthermore, TIRFM imaging cannot decipher the depth of the channel with respect to the microscope, which will affect the change in fluorescence that the microscope detects, thereby affecting its sensitivity to fast single-channel activity. Using the widely used Ca2+ diffusion coefficients and reaction rates, our simulations show equilibration rates that are eight times slower than TIRFM imaging. We show that to get equilibrium rates consistent with observed values, the diffusion coefficients and reaction rates have to be significantly higher than the values reported in the literature, and predict the channel depth to be 200–250nm. Finally, we show that with the addition of noise, short events due to 1–2ms opening and closing of channels that are observed in computational models can be missed in TIRFM.
机译:高分辨率全内反射(TIRF)显微镜(TIRFM)以及详细的计算模型为了解由无处不在的肌醇1,4,5介导的广泛的Ca 2 + 信号提供了一种有力的方法-三磷酸(IP3)受体(IP3R)通道。要利用这种卓有成效的合作关系,还需要模型和观测结果之间保持密切的一致。但是,通过TIRFM成像的基本Ca 2 + 释放事件,抽吸过程并没有像使用数据驱动的单通道模型模拟抽吸过程中显示的那样,在抽吸过程中和抽吸过程之间显示出快速的单通道打开和关闭。 TIRFM还显示了通道打开或关闭后10毫秒的快速平衡,这在使用标准Ca 2 + 扩散系数和指示染料与Ca 2 + 。此外,TIRFM成像无法解密相对于显微镜的通道深度,这会影响显微镜检测到的荧光变化,从而影响其对快速单通道活动的敏感性。使用广泛使用的Ca 2 + 扩散系数和反应速率,我们的模拟结果表明平衡速率比TIRFM成像慢了八倍。我们表明,要获得与观测值一致的平衡速率,扩散系数和反应速率必须显着高于文献中报道的值,并预测通道深度为200–250nm。最后,我们表明,随着噪声的增加,在TIRFM中可能会错过由于在计算模型中观察到的通道打开和关闭1–2ms而引起的短事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号