首页> 美国卫生研究院文献>other >Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis Water Status and K+/Na+ Homeostasis
【2h】

Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis Water Status and K+/Na+ Homeostasis

机译:丛枝菌根共生通过改善光合作用改善水分状况和K + / Na +稳态来缓解黑刺槐的盐胁迫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on the photosynthetic capacity, water status, and K+/Na+ homeostasis lead to the improved growth performance and salt tolerance of black locust exposed to salt stress.
机译:土壤盐碱化和相关的土地退化是主要的且日益严重的生态问题。土壤中过量的盐分会阻碍植物的光合作用,阻碍根系吸收水分和养分,例如K + 。丛枝菌根(AM)真菌可以减轻寄主植物中的盐胁迫。尽管大量研究表明,菌根能够改善光合作用和水分状况,但是涉及的分子机制却很少受到研究关注。在本研究中,我们分析了AM共生和盐胁迫对光合作用,水分状况,Na + 和K + 的浓度以及几种相关基因表达的影响。具有光合作用(RppsbA,RppsbD,RprbcL和RprbcS)和编码水通道蛋白或膜转运蛋白的基因,这些蛋白参与K + 和/或Na + 的吸收,转运或分隔蝗虫体内稳态(RpSOS1,RpHKT1,RpNHX1和RpSKOR)。结果表明,盐度降低了非菌根(AM)和AM植物的净光合速率,气孔导度和相对含水量。与NM植物相比,AM植物中这三个参数的减少幅度较小。在盐分条件下,AM真菌显着提高了植物的净光合速率,光系统II光化学的量子效率和K + 含量,但明显降低了Na + 含量。与NM植株相比,在200 mM NaCl存在下,AM植株的相对含水量也显着增加,而Na + 的枝/根比明显降低。此外,菌根定植上调了叶片中三个叶绿体基因(RppsbA,RppsbD和RprbcL)的表达,以及三个基因(RpSOS1,RpHKT1和RpSKOR)的编码与K + / Na有关的膜转运蛋白的表达。根中的 + 动态平衡。取决于土壤盐分,AM共生在叶片和根部均调节了几种水通道蛋白基因的表达。这项研究表明AM共生对黑麦的光合能力,水分状况和K + / Na + 稳态具有有益的作用,从而改善了黑麦的生长性能和耐盐性蝗虫暴露于盐胁迫下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号