首页> 美国卫生研究院文献>other >Numerical simulation of cell squeezing through a micropore by the immersed boundary method
【2h】

Numerical simulation of cell squeezing through a micropore by the immersed boundary method

机译:浸入边界法模拟细胞通过微孔的挤压

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The deformability of cells has been used as a biomarker to detect circulating tumor cells (CTCs) from patient blood sample using microfluidic devices with microscale pores. Successful separations of CTCs from a blood sample requires careful design of the micropore size and applied pressure. This paper presented a parametric study of cell squeezing through micropores with different size and pressure. Different membrane compressibility modulus was used to characterize the deformability of varying cancer cells. Nucleus effect was also considered. It shows that the cell translocation time though the micropore increases with cell membrane compressibility modulus and nucleus stiffness. Particularly, it increases exponentially as the micropore diameter or pressure decreases. The simulation results such as the cell squeezing shape and translocation time agree well with experimental observations. The simulation results suggest that special care should be taken in applying Laplace-Young equation (LYE) to microfluidic design due to the nonuniform stress distribution and membrane bending resistance.
机译:细胞的可变形性已被用作生物标志物,以使用具有微孔的微流控设备从患者血液样本中检测循环肿瘤细胞(CTC)。从血样中成功分离四氯化碳需要仔细设计微孔尺寸和施加的压力。本文介绍了通过不同大小和压力的微孔挤压细胞的参数研究。不同的膜可压缩模量用于表征各种癌细胞的可变形性。还考虑了核效应。结果表明,通过微孔的细胞移位时间随细胞膜的压缩模量和细胞核硬度而增加。特别是,它随着微孔直径或压力的减小而呈指数增加。仿真结果如细胞挤压形状和移位时间与实验观察结果吻合得很好。仿真结果表明,由于应力分布和膜抗弯强度不均匀,在将Laplace-Young方程(LYE)应用于微流体设计时应格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号