首页> 美国卫生研究院文献>other >A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit
【2h】

A plasmid-based Escherichia coli gene expression system with cell-to-cell variation below the extrinsic noise limit

机译:一种基于质粒的大肠杆菌基因表达系统其细胞间差异低于外部噪声极限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range.
机译:合成生物学和微生物学的实验可以受益于具有低细胞间变异性(噪音)且可在有用的动态范围内精确调节表达水平的蛋白质表达系统。尽管在了解微生物基因调控的分子生物学方面取得了进步,但许多实验仍采用蛋白质表达系统,该系统表现出高噪声和几乎全无响应的诱导作用。我提出了一个表达系统,该系统结合了已知可减少基因表达噪音的元素:负自动调节和双顺反子转录。我通过随机模拟表明,虽然负自动调节可以对感应产生更渐进的响应,但是抑制子和目的基因的双顺反子表达可能是必要的,以将噪声降低到外部极限以下。我合成了一个包含这些原理的基于质粒的系统,并使用流式细胞仪和荧光显微镜研究了其在大肠杆菌细胞中的特性,以表征诱导剂量反应,诱导/抑制动力学和基因表达噪声。通过改变核糖体结合位点的强度,可以达到55-10,740个分子/细胞的表达水平,且噪音低于外在极限。可以在大于20倍的动态范围内诱导单个菌株。不同调节网络的实验比较证实,双顺反子自动调节可降低噪音,并揭示了具有组成型表达转录阻遏物的常规表达系统出乎意料的高噪音。我建议使用混合的低噪声表达系统来增加动态范围。

著录项

  • 期刊名称 other
  • 作者

    Zach Hensel;

  • 作者单位
  • 年(卷),期 -1(12),10
  • 年度 -1
  • 页码 e0187259
  • 总页数 15
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号