首页> 美国卫生研究院文献>other >Comparison of Tenofovir Plasma and Tissue Exposure Using a Population Pharmacokinetic Model and Bootstrap: A Simulation Study from Observed Data
【2h】

Comparison of Tenofovir Plasma and Tissue Exposure Using a Population Pharmacokinetic Model and Bootstrap: A Simulation Study from Observed Data

机译:使用人口药代动力学模型和Bootstrap比较替诺福韦血浆和组织暴露:从观察到的数据进行的模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sparse tissue sampling with intensive plasma sampling creates a unique data analysis problem in determining drug exposure in clinically relevant tissues. Tissue exposure may govern drug efficacy, as many drugs exert their actions in tissues. We compared tissue area-under-the-curve (AUC) generated from bootstrapped noncompartmental analysis (NCA) methods and compartmental nonlinear mixed effect (NLME) modeling. A model of observed data after single-dose tenofovir disoproxil fumarate was used to simulate plasma and tissue concentrations for two destructive tissue sampling schemes. Two groups of 100 data sets with densely-sampled plasma and one tissue sample per individual were created. The bootstrapped NCA (SAS 9.3) used a trapezoidal method to calculate geometric mean tissue AUC per dataset. For NLME, individual post-hoc estimates of tissue AUC were determined, and the geometric mean from each dataset calculated. Median normalized prediction error (NPE) and absolute normalized prediction error (ANPE) were calculated for each method from the true values of the modeled concentrations. Both methods produced similar tissue AUC estimates close to true values. Although the NLME-generated AUC estimates had larger NPEs, it had smaller ANPEs. Overall, NLME NPEs showed AUC under-prediction but improved precision and fewer outliers. The bootstrapped NCA method produced more accurate estimates but with some NPEs >100%. In general, NLME is preferred, as it accommodates less intensive tissue sampling with reasonable results, and provides simulation capabilities for optimizing tissue distribution. However, if the main goal is an accurate AUC for the studied scenario, and relatively intense tissue sampling is feasible, the NCA bootstrap method is a reasonable, and potentially less time-intensive solution.
机译:稀疏组织采样和密集血浆采样在确定临床相关组织中的药物暴露量方面产生了独特的数据分析问题。由于许多药物在组织中发挥作用,因此暴露于组织可能会影响药物疗效。我们比较了自举非房室分析(NCA)方法和房室非线性混合效应(NLME)建模生成的曲线下组织面积(AUC)。在单剂量替诺福韦酯富马酸二氟哌啶醇后的观察数据模型用于模拟两种破坏性组织采样方案的血浆和组织浓度。创建了两组具有密集采样血浆的100个数据集,每个人一个组织样本。自举NCA(SAS 9.3)使用梯形方法来计算每个数据集的几何平均组织AUC。对于NLME,确定组织AUC的事后估算,并计算每个数据集的几何平均值。从建模浓度的真实值为每种方法计算中位标准化预测误差(NPE)和绝对标准化预测误差(ANPE)。两种方法都产生了接近真实值的相似组织AUC估计值。尽管NLME生成的AUC估计值具有较大的NPE,但其ANPE较小。总体而言,NLME NPE显示出AUC预测不足,但精度更高,离群值更少。自举NCA方法得出的估计值更准确,但某些NPE大于100%。通常,NLME是首选,因为它可以进行强度较低的组织采样并获得合理的结果,并提供用于优化组织分布的仿真功能。但是,如果主要目标是针对所研究场景的准确AUC,并且相对密集的组织采样是可行的,则NCA引导程序方法是一种合理的解决方案,并且可能耗时较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号