首页> 美国卫生研究院文献>other >A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale
【2h】

A sprinkling experiment to quantify celerity–velocity differences at the hillslope scale

机译:进行喷洒实验以量化山坡尺度上的速度-速度差异

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Few studies have quantified the differences between celerity and velocity of hillslope water flow and explained the processes that control these differences. Here, we asses these differences by combining a 24-day hillslope sprinkling experiment with a spatially explicit hydrologic model analysis. We focused our work on Watershed 10 at the H. J. Andrews Experimental Forest in western Oregon. Celerities estimated from wetting front arrival times were generally much faster than average vertical velocities of δ2H. In the model analysis, this was consistent with an identifiable effective porosity (fraction of total porosity available for mass transfer) parameter, indicating that subsurface mixing was controlled by an immobile soil fraction, resulting in the attenuation of the δ2H input signal in lateral subsurface flow. In addition to the immobile soil fraction, exfiltrating deep groundwater that mixed with lateral subsurface flow captured at the experimental hillslope trench caused further reduction in the δ2H input signal. Finally, our results suggest that soil depth variability played a significant role in the celerity–velocity responses. Deeper upslope soils damped the δ2H input signal, while a shallow soil near the trench controlled the δ2H peak in lateral subsurface flow response. Simulated exit time and residence time distributions with our hillslope hydrologic model showed that water captured at the trench did not represent the entire modeled hillslope domain; the exit time distribution for lateral subsurface flow captured at the trench showed more early time weighting.
机译:很少有研究量化山坡水流速度与速度之间的差异,并解释控制这些差异的过程。在这里,我们通过将24天的山坡洒水实验与空间上明确的水文模型分析相结合来评估这些差异。我们将工作重点放在俄勒冈州西部的H. J. Andrews实验森林的10分水岭。从润湿前到达时间估计的速度通常比δ 2 H的平均垂直速度快得多。在模型分析中,这与可识别的有效孔隙度(可用于传质的总孔隙度的分数)参数一致,表明地下混合受固定的土壤组分控制,导致δ 2 的衰减。 sup> H输入信号在地下地下流动中。除了固定的土壤部分外,渗入的深层地下水与在实验性山坡沟中捕获的侧向地下流动相混合,进一步降低了δ 2 H输入信号。最后,我们的结果表明,土壤深度变化在速度-速度响应中起着重要作用。较深的上坡土壤抑制了δ 2 H输入信号,而靠近沟槽的浅层土壤控制了地下地下流动响应中的δ 2 H峰值。用我们的山坡水文模型模拟的出口时间和停留时间分布表明,在沟渠中捕获的水并不能代表整个模拟的山坡区域。在沟槽处捕获的横向地下流体的出口时间分布显示出更早的时间加权。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号