首页> 美国卫生研究院文献>other >Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States
【2h】

Considerations for Achieving Cross-Platform Point Cloud Data Fusion across Different Dryland Ecosystem Structural States

机译:在不同旱地生态系统结构状态之间实现跨平台点云数据融合的注意事项

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Remotely sensing recent growth, herbivory, or disturbance of herbaceous and woody vegetation in dryland ecosystems requires high spatial resolution and multi-temporal depth. Three dimensional (3D) remote sensing technologies like lidar, and techniques like structure from motion (SfM) photogrammetry, each have strengths and weaknesses at detecting vegetation volume and extent, given the instrument's ground sample distance and ease of acquisition. Yet, a combination of platforms and techniques might provide solutions that overcome the weakness of a single platform. To explore the potential for combining platforms, we compared detection bias amongst two 3D remote sensing techniques (lidar and SfM) using three different platforms [ground-based, small unmanned aerial systems (sUAS), and manned aircraft]. We found aerial lidar to be more accurate for characterizing the bare earth (ground) in dense herbaceous vegetation than either terrestrial lidar or aerial SfM photogrammetry. Conversely, the manned aerial lidar did not detect grass and fine woody vegetation while the terrestrial lidar and high resolution near-distance (ground and sUAS) SfM photogrammetry detected these and were accurate. UAS SfM photogrammetry at lower spatial resolution under-estimated maximum heights in grass and shrubs. UAS and handheld SfM photogrammetry in near-distance high resolution collections had similar accuracy to terrestrial lidar for vegetation, but difficulty at measuring bare earth elevation beneath dense herbaceous cover. Combining point cloud data and derivatives (i.e., meshes and rasters) from two or more platforms allowed for more accurate measurement of herbaceous and woody vegetation (height and canopy cover) than any single technique alone. Availability and costs of manned aircraft lidar collection preclude high frequency repeatability but this is less limiting for terrestrial lidar, sUAS and handheld SfM. The post-processing of SfM photogrammetry data became the limiting factor at larger spatial scale and temporal repetition. Despite the utility of sUAS and handheld SfM for monitoring vegetation phenology and structure, their spatial extents are small relative to manned aircraft.
机译:遥感干旱地区生态系统中最近的生长,草食或草本和木本植被的扰动需要高空间分辨率和多时相深度。激光雷达等三维(3D)遥感技术以及运动成像(SfM)摄影技术等技术在给定仪器的地面样本距离并易于获取的情况下,在检测植被体积和程度方面各有优缺点。但是,平台和技术的组合可能会提供克服单个平台的弱点的解决方案。为了探索组合平台的潜力,我们使用三种不同的平台[地面,小型无人机系统(sUAS)和有人驾驶飞机]比较了两种3D遥感技术(激光雷达和SfM)的检测偏差。我们发现空中激光雷达比地面激光雷达或空中SfM摄影测量法更准确地表征茂密草木植被中的裸露地球。相反,有人驾驶的空中激光雷达无法检测到草和精细的木质植被,而地面激光雷达和高分辨率近距离(地面和sUAS)SfM摄影测量法可以检测到这些并且是准确的。在较低的空间分辨率下,UAS SfM摄影测量法低估了草丛和灌木丛的最大高度。在近距离高分辨率采集中,UAS和手持式SfM摄影测量法的精度与陆地激光雷达相似,但难以测量致密草皮下的裸露地球海拔。来自两个或多个平台的点云数据和导数(即网格和栅格)的组合,比单独使用任何一种技术都能更准确地测量草本和木本植被(高度和树冠覆盖)。载人飞机激光雷达采集的可用性和成本排除了高频重复性,但这对地面激光雷达,sUAS和手持式SfM的限制较小。 SfM摄影测量数据的后处理成为较大空间规模和时间重复的限制因素。尽管sUAS和手持式SfM可用于监视植被物候和结构,但其空间范围相对于有人驾驶飞机而言较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号