首页> 美国卫生研究院文献>other >Climate Change and the Impact of Greenhouse Gasses: CO2 and NO Friends and Foes of Plant Oxidative Stress
【2h】

Climate Change and the Impact of Greenhouse Gasses: CO2 and NO Friends and Foes of Plant Oxidative Stress

机译:气候变化和温室气体的影响:CO2和NO植物氧化胁迫的敌友

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth’s surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S-nitrosylation. GSNO could be decomposed by the GSNO reductase (GSNOR) to GSSG which, in turn, is reduced to GSH by glutathione reductase (GR). GSNOR may be also inhibited by S-nitrosylation and GR activated by NO. In conclusion, NO plays a central role in the tolerance of plants to climate change.
机译:在这里,我们回顾有关植物如何面对气候变化导致的氧化还原失衡的信息,并重点关注一氧化氮(NO)在此响应中的作用。由于温室效应,地球上的生命成为可能。没有它,地球表面的温度将在-19°C左右,而不是目前的平均水平14°C。温室效应是由温室气体(GHG)产生的,如水蒸气,二氧化碳(CO2),甲烷(CH4),一氧化二氮(NxO)和臭氧(O3)。温室气体有自然和人为来源。但是,不断增加的温室气体会引起极端的气候变化,例如洪水,干旱和高温,这些变化会诱发植物中的活性氧(ROS)和氧化胁迫。应激条件下ROS的主要来源是:光呼吸增强,NADPH氧化酶(NOX)活性,脂肪酸的β-氧化以及线粒体和叶绿体电子传输链的紊乱。植物已经开发出一种抗氧化剂机制,该机制包括ROS解毒酶的活性[例如,超氧化物歧化酶(SOD),抗坏血酸过氧化物酶(APX),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GPX)和过氧iredoxin(PRX)],以及几乎所有亚细胞区室中都存在抗氧化剂分子,例如抗坏血酸(ASC)和谷胱甘肽(GSH)。 CO2和NO有助于维持氧化还原平衡。较高的CO2浓度通过CO2不饱和的Rubisco活性提高了光合作用。但是Rubisco光呼吸作用和NOX活性也可以增加ROS的产生。 NO调节ROS,GSH,GSNO和ASC之间的ROS浓度保持平衡。当ROS浓度很高时,NO会诱导SOD,APX和CAT的转录和活性。但是,当需要ROS时(例如,为了抵抗病原体),NO可以通过半胱氨酸残基的S-亚硝化作用抑制APX,CAT和NOX的活性,有利于细胞死亡。 NO还可以通过多种方式调节GSH的浓度。 NO可能与GSH反应形成GSNO,它是NO细胞的储存库和S-亚硝基化的主要来源。 GSNO可以被GSNO还原酶(GSNOR)分解为GSSG,然后被谷胱甘肽还原酶(GR)还原为GSH。 GSNOR也可能被S-亚硝基化抑制,而GR被NO激活。总之,NO在植物对气候变化的耐受性中起着核心作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号