首页> 美国卫生研究院文献>other >RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1) in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation
【2h】

RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1) in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation

机译:RNAi介导的小麦籽粒肌醇五磷酸磷酸激酶(IPK1)的下调降低植酸水平并增加铁和锌的积累

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA) is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1) is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5). Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28–56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe) and zinc (Zn) content, thereby enhancing their molar ratios (Zn:PA and Fe:PA). Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.
机译:微量营养素生物利用度的提高对于解决发展中国家的营养不良至关重要。解决微量营养素生物利用度的各种方法显示出令人鼓舞的迹象,尤其是在谷物作物中。植酸(PA)由于其螯合重要的微量营养素的能力而受到限制,因而限制了其生物利用度,因此被认为是主要的抗营养素。因此,已广泛探索操纵PA生物合成途径以克服不同作物物种中的多效性作用。最近,我们报道功能性小麦肌醇五磷酸激酶(TaIPK1)参与了PA生物合成,但是,IPK1基因在小麦中的功能作用仍然难以捉摸。在这项研究中,对六倍体小麦的IPK1转录本进行了RNAi介导的基因沉默。选择了四个小麦的非分离RNAi系进行详细研究(S3-D-6-1; S6-K-3-3; S6-K-6-10和S16-D-9-5)。 TaIPK1转录本降低的T4种子上的纯合转基因RNAi株系的PA降低了28-56%。 IPK1沉默也导致成熟谷物中的游离磷酸盐增加。尽管未观察到穗的表型变化,但降低了籽粒PA导致每个小穗的种子数量减少。谷物PA的降低还伴随着铁(Fe)和锌(Zn)含量的显着增加,从而提高了它们的摩尔比(Zn:PA和Fe:PA)。总的来说,这项工作表明IPK1是使用基因组编辑工具解决小麦籽粒中矿物质积累的有前途的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号