首页> 美国卫生研究院文献>other >Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response
【2h】

Spaceflight Modifies Escherichia coli Gene Expression in Response to Antibiotic Exposure and Reveals Role of Oxidative Stress Response

机译:太空飞行修改大肠杆菌基因表达对抗生素暴露的反应并揭示氧化应激反应的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacteria grown in space experiments under microgravity conditions have been found to undergo unique physiological responses, ranging from modified cell morphology and growth dynamics to a putative increased tolerance to antibiotics. A common theory for this behavior is the loss of gravity-driven convection processes in the orbital environment, resulting in both reduction of extracellular nutrient availability and the accumulation of bacterial byproducts near the cell. To further characterize the responses, this study investigated the transcriptomic response of Escherichia coli to both microgravity and antibiotic concentration. E. coli was grown aboard International Space Station in the presence of increasing concentrations of the antibiotic gentamicin with identical ground controls conducted on Earth. Here we show that within 49 h of being cultured, E. coli adapted to grow at higher antibiotic concentrations in space compared to Earth, and demonstrated consistent changes in expression of 63 genes in response to an increase in drug concentration in both environments, including specific responses related to oxidative stress and starvation response. Additionally, we find 50 stress-response genes upregulated in response to the microgravity when compared directly to the equivalent concentration in the ground control. We conclude that the increased antibiotic tolerance in microgravity may be attributed not only to diminished transport processes, but also to a resultant antibiotic cross-resistance response conferred by an overlapping effect of stress response genes. Our data suggest that direct stresses of nutrient starvation and acid-shock conveyed by the microgravity environment can incidentally upregulate stress response pathways related to antibiotic stress and in doing so contribute to the increased antibiotic stress tolerance observed for bacteria in space experiments. These results provide insights into the ability of bacteria to adapt under extreme stress conditions and potential strategies to prevent antimicrobial-resistance in space and on Earth.
机译:已经发现,在太空实验中在微重力条件下生长的细菌会发生独特的生理反应,从改变的细胞形态和生长动力学到推测的对抗生素的耐受性增加。这种行为的一个常见理论是在轨道环境中失去重力驱动的对流过程,从而导致细胞外营养物利用率降低和细菌副产物在细胞附近积累。为了进一步表征反应,本研究调查了大肠杆菌对微重力和抗生素浓度的转录反应。大肠杆菌是在浓度不断增加的庆大霉素抗生素存在下在国际空间站上生长的,并在地球上进行了相同的地面控制。在这里,我们表明,在培养后的49小时内,大肠杆菌适应了比地球更高的空间抗生素浓度,并且在两种环境中均表现出响应于药物浓度增加而响应的63个基因表达的一致变化,包括特异性与氧化应激和饥饿反应有关的反应。此外,当直接与地面对照中的等效浓度进行比较时,我们发现50个应力响应基因响应微重力而被上调。我们得出的结论是,微重力下对抗生素的耐受性增加可能不仅归因于运输过程的减少,而且还归因于应激反应基因的重叠效应所产生的抗生素交叉耐药性反应。我们的数据表明,微重力环境所传递的营养饥饿和酸冲击的直接胁迫可以偶然地上调与抗生素胁迫相关的胁迫反应途径,从而有助于在太空实验中观察到细菌对抗生素的耐受性增加。这些结果提供了对细菌在极端压力条件下的适应能力以及防止太空和地球上抗微生物药物耐药性的潜在策略的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号