首页> 美国卫生研究院文献>other >Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate
【2h】

Water and nitrogen management effects on semiarid sorghum production and soil trace gas flux under future climate

机译:水和氮管理对未来气候下半干旱高粱产量和土壤微量气体通量的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

External inputs to agricultural systems can overcome latent soil and climate constraints on production, while contributing to greenhouse gas emissions from fertilizer and water management inefficiencies. Proper crop selection for a given region can lessen the need for irrigation and timing of N fertilizer application with crop N demand can potentially reduce N2O emissions and increase N use efficiency while reducing residual soil N and N leaching. However, increased variability in precipitation is an expectation of climate change and makes predicting biomass and gas flux responses to management more challenging. We used the DayCent model to test hypotheses about input intensity controls on sorghum (Sorghum bicolor (L.) Moench) productivity and greenhouse gas emissions in the southwestern United States under future climate. Sorghum had been previously parameterized for DayCent, but an inverse-modeling via parameter estimation method significantly improved model validation to field data. Aboveground production and N2O flux were more responsive to N additions than irrigation, but simulations with future climate produced lower values for sorghum than current climate. We found positive interactions between irrigation at increased N application for N2O and CO2 fluxes. Extremes in sorghum production under future climate were a function of biomass accumulation trajectories related to daily soil water and mineral N. Root C inputs correlated with soil organic C pools, but overall soil C declined at the decadal scale under current weather while modest gains were simulated under future weather. Scaling biomass and N2O fluxes by unit N and water input revealed that sorghum can be productive without irrigation, and the effect of irrigating crops is difficult to forecast when precipitation is variable within the growing season. These simulation results demonstrate the importance of understanding sorghum production and greenhouse gas emissions at daily scales when assessing annual and decadal-scale management decisions’ effects on aspects of arid and semiarid agroecosystem biogeochemistry.
机译:农业系统的外部投入可以克服潜在的土壤和生产上的气候限制,同时由于肥料和水管理效率低下而导致温室气体排放。给定区域的适当农作物选择可以减少灌溉需求,而氮肥的施肥时间与农作物的氮需求可以潜在地减少N2O排放并提高氮的利用效率,同时减少残留的土壤N和N的淋失。但是,降水变化的增加是对气候变化的一种期望,这使得预测生物量和气体通量对管理的响应更具挑战性。我们使用DayCent模型来测试关于未来气候下美国西南部的高粱(Sorghum bicolor(L.)Moench)生产力和温室气体排放的输入强度控制的假设。高粱以前已经为DayCent进行了参数化,但是通过参数估计方法进行的逆建模显着改善了对田间数据的模型验证。与灌溉相比,地上产量和N2O通量对氮的添加更为敏感,但是对未来气候的模拟得出的高粱值比当前气候要低。我们发现在增加的N2O施氮量和CO2通量之间,灌溉之间存在积极的相互作用。未来气候下高粱产量的极端增长是与每日土壤水和矿质氮相关的生物量积累轨迹的函数。根系碳输入与土壤有机碳库相关,但在当前天气条件下,整体土壤碳在十年尺度上下降,但模拟了适度增长在未来的天气下。按单位N和水输入量缩放生物量和N2O通量表明,高粱无需灌溉即可生产,当生长季节内降水变化时,很难预测灌溉作物的效果。这些模拟结果表明,在评估年度和十年规模管理决策对干旱和半干旱农业生态系统生物地球化学方面的影响时,了解每日规模的高粱生产和温室气体排放的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号