首页> 美国卫生研究院文献>other >Developmental chromatin restriction of pro-growth gene networks acts as an epigenetic barrier to axon regeneration in cortical neurons
【2h】

Developmental chromatin restriction of pro-growth gene networks acts as an epigenetic barrier to axon regeneration in cortical neurons

机译:促生长基因网络的染色质发育限制是皮层神经元轴突再生的表观遗传障碍

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age-dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome-wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub-networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro-regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth-associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro-regenerative interventions in the adult, while also pointing toward selected pioneer factors as high-priority candidates for future combinatorial experiments.
机译:中枢神经系统中的轴突再生部分被成熟神经元的内在再生能力的发育下降所阻止。轴突生长能力的丧失可能反映了基因表达的广泛变化,但驱动这一转变的机制仍不清楚。在其他细胞环境中,染色质的可及性已成为一种关键的调控机制,从而增加了染色质结构可能导致年龄依赖性的再生潜力丧失的可能性。在这里,我们建立了一条整合的生物信息学流水线,将对发展动态基因网络的分析与转录因子调节和染色质可及性的全基因组图相结合。当应用于发育中的皮层时,该管道检测到与轴突生长相关的基因子网络中染色质的整体封闭。接下来,我们分析了成熟的CNS神经元,这些神经元被提供了各种促再生转录因子。与SOX11和KLF7的先前结果不同,在这里我们发现JUN或STAT3的活化形式均不能促进皮质脊髓束的实质性再生。相应地,JUN或STAT3目标基因中的染色质可及性大大低于SOX11和KLF7的预期目标。最后,我们使用管道来预测可能缓解与生长相关的基因座上的染色质限制的先驱因子。总的来说,这种综合分析证实了以下假设:动态染色质可及性导致了轴突生长能力的发育下降,并影响了成年前再生干预的功效,同时还指出了选定的先驱因素作为未来组合实验的高优先级候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号