首页> 美国卫生研究院文献>other >Nitrogen Limitations on Microbial Degradation of Plant Substrates Are Controlled by Soil Structure and Moisture Content
【2h】

Nitrogen Limitations on Microbial Degradation of Plant Substrates Are Controlled by Soil Structure and Moisture Content

机译:土壤基质和水分含量可控制氮对植物基质微生物降解的限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mineral nitrogen (N) availability to heterotrophic micro-organisms is known to impact organic matter (OM) decomposition. Different pathways determining the N accessibility depend to a large extent on soil structure. Contact between soil mineral and OM substrate particles can facilitate N transport toward decomposition hot spots. However, the impact of soil structure on N availability to microbes and thus heterotrophic microbial activity and community structure is not yet fully understood. We hypothesized that carbon mineralization (Cmin) from low-N substrate would be stimulated by increased N availability caused by closer contact with soil particles or by a higher moisture level, enhancing potential for N-diffusion. Under opposite conditions retarded heterotrophic activity and a dominance of fungi were expected. A 128-days incubation experiment with CO2 emission monitoring from artificially reconstructed miniature soil cores with contrasting soil structures, viz. high or low degree of contact between soil particles, was conducted to study impacts on heterotrophic activity. The soil cores were subjected to different water filled pore space percentages (25 or 50% WFPS) and amended with either easily degradable OM high in N (grass) or more resistant OM low in N (sawdust). X-ray μCT image processing allowed to quantify the pore space in 350 μm around OM substrates, i.e., the microbial habitat of involved decomposers. A lower local porosity surrounding sawdust particles in soils with stonger contact was confirmed, at least at 25% WFPS. Mineral N addition to sawdust amended soils with small particle contact at 25% WFPS resulted in a stimulated respiration. Cmin in the latter soils was lower than in case of high particle contact. This was not observed for grass substrate particles or at 50% WFPS. The interactive effect of substrate type and soil structure suggests that the latter controls Cmin through mediation of N diffusion and in turn N availability. Phospholipid fatty acid did not reveal promotion of fungal over bacterial biomarkers in treatments with N-limited substrate decomposition. Combining X-ray μCT with tailoring soil structure allows for more reliable investigation of effects on the soil microbial community, because as also found here, the established soil pore network structure can strongly deviate from the intended one.
机译:已知异养微生物的矿物质氮(N)可用性会影响有机物(OM)的分解。确定氮可及性的不同途径在很大程度上取决于土壤结构。土壤矿物和OM基质颗粒之间的接触可以促进N向分解热点的迁移。然而,土壤结构对微生物对氮的有效性以及异养微生物活动和群落结构的影响尚不完全清楚。我们假设低氮底物的碳矿化作用(Cmin)将因与土壤颗粒的紧密接触或较高的水分含量导致氮的有效性增加而受到刺激,从而增加了氮扩散的潜力。在相反的条件下,预期的异养活性降低,并且真菌占主导地位。用人工对比的土壤结构对比的微型土壤核心对CO2排放进行监控的128天孵化实验。进行了土壤颗粒之间高低接触的研究,以研究其对异养活性的影响。使土壤核心经受不同的充水孔隙空间百分比(25或50%WFPS),并用易于降解的高N(草)的OM或更具耐性的低N的木屑(木屑)进行修正。 X射线μCT图像处理可以量化OM底物周围350μm的孔空间,即相关分解物的微生物栖息地。已证实与石接触的土壤中的锯末颗粒周围的局部孔隙率较低,WFPS至少为25%。以25%WFPS与小颗粒接触的锯末改良土壤中的矿物质N含量增加,导致呼吸加快。后者土壤中的Cmin低于高颗粒接触情况下的Cmin。对于草基质颗粒或在50%WFPS时未观察到。基质类型和土壤结构的相互作用影响表明,后者通过N扩散和N的有效利用来控制Cmin。在N受限底物分解的处理中,磷脂脂肪酸没有显示出比细菌生物标志物更能促进真菌的生长。将X射线μCT与定制的土壤结构相结合,可以更可靠地研究对土壤微生物群落的影响,因为正如在此还发现的那样,已建立的土壤孔隙网络结构可能与预期的有很大不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号