首页> 美国卫生研究院文献>other >Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20
【2h】

Dissimilatory Sulfate Reduction Under High Pressure by Desulfovibrio alaskensis G20

机译:阿拉斯加脱硫弧菌G20在高压下异化硫酸盐还原

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Biosouring results from production of H2S by sulfate-reducing microorganisms (SRMs) in oil reservoirs. H2S is toxic, corrosive, and explosive, and as such, represents a significant threat to personnel, production facilities, and transportation pipelines. Since typical oil reservoir pressures can range from 10 to 50 MPa, understanding the role that pressure plays in SRM metabolism is important to improving souring containment strategies. To explore the impact of pressure, we grew an oil-field SRM isolate, Desulfovibrio alaskensis G20, under a range of pressures (0.1–14 MPa) at 30°C. The observed microbial growth rate was an inverse function of pressure with an associated slight reduction in sulfate and lactate consumption rate. Competitive fitness experiments with randomly bar-coded transposon mutant library sequencing (RB-TnSeq) identified several genes associated with flagellar biosynthesis and assembly that were important at high pressure. The fitness impact of specific genes was confirmed using individual transposon mutants. Confocal microscopy revealed that enhanced cell aggregation occurs at later stages of growth under pressure. We also assessed the effect of pressure on SRM inhibitor potency. Dose-response experiments showed a twofold decrease in the sensitivity of D. alaskensis to the antibiotic chloramphenicol at 14 MPa. Fortuitously, pressure had no significant influence on the inhibitory potency of the common souring controlling agent nitrate, or the emerging SRM inhibitors perchlorate, monofluorophosphate, or zinc pyrithione. Our findings improve the conceptual model of microbial sulfate reduction in high-pressure environments and the influence of pressure on souring inhibitor efficacy.
机译:生物溶解来自油藏中硫酸盐还原微生物(SRM)产生的H2S。 H2S有毒,腐蚀性和爆炸性,因此对人员,生产设施和运输管道构成重大威胁。由于典型的油藏压力范围可能在10到50 MPa之间,因此了解压力在SRM代谢中的作用对于改善酸性围堵策略至关重要。为了探索压力的影响,我们在30°C的一系列压力(0.1–14 MPa)下种植了一个油田SRM分离物Desulfovibrio alaskensis G20。观察到的微生物生长速率是压力的反函数,其相关的硫酸盐和乳酸消耗速率略有降低。使用随机条形码转座子突变体文库测序(RB-TnSeq)进行的竞争适应性实验,确定了与鞭毛生物合成和组装相关的几个基因,这些基因在高压下很重要。使用单个转座子突变体证实了特定基因的适应性影响。共聚焦显微镜显示,增强的细胞聚集发生在压力下生长的后期。我们还评估了压力对SRM抑制剂效能的影响。剂量响应实验显示,在14 MPa时,阿拉斯加迪克酵母对抗生素氯霉素的敏感性降低了两倍。幸运的是,压力对常用的酸味控制剂硝酸盐或新兴的SRM抑制剂高氯酸盐,一氟磷酸盐或巯氧吡啶锌的抑制能力没有显着影响。我们的发现改善了高压环境下微生物硫酸盐还原的概念模型,以及压力对酸味抑制剂功效的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号