首页> 美国卫生研究院文献>other >Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System
【2h】

Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System

机译:在动态驱动的变构系统中金属结合的溶剂熵和构象熵的功能作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Allostery is a regulatory phenomenon whereby ligand binding to one site influences the binding of the same or a different ligand to another site on a macromolecule. The physical origins of allosteric regulation remain under intense investigation. In general terms, ligand-induced structural changes, perturbations of residue-specific dynamics, and surrounding solvent molecules all potentially contribute to the global energetics of allostery. While the role of solvent is generally well understood in regulatory events associated with major protein structural rearrangements, the degree to which protein dynamics impact solvent degrees of freedom is unclear, particularly in cases of dynamically driven allostery. With the aid of new crystal structures, extensive calorimetric and residue-specific dynamics studies over a range of time scales and temperatures, we dissect for the first time the relative degree to which changes in solvent entropy and residue-specific dynamics impact dynamically driven, allosteric inhibition of DNA binding by Zn in the zinc efflux repressor, CzrA (chromosomal zinc-regulated repressor). We show that non-native residue-specific dynamics in allosterically impaired CzrA mutants are accompanied by significant perturbations in solvent entropy that cannot be predicted from crystal structures. We conclude that functional dynamics are not necessarily restricted to protein residues but involve surface water molecules that may be responding to ligand (Zn)-mediated perturbations in protein internal motions that define the conformational ensemble, rather than major structural rearrangements.
机译:变构是一种调节现象,配体与一个位点的结合会影响相同或不同配体与大分子另一位点的结合。变构调节的物理起源仍在深入研究中。一般而言,配体诱导的结构变化,残基特异性动力学的扰动以及周围的溶剂分子均可能促成变构的整体能量学。尽管在与主要蛋白质结构重排有关的调节事件中通常很好地理解了溶剂的作用,但尚不清楚蛋白质动力学影响溶剂自由度的程度,特别是在动态驱动的构象的情况下。借助新的晶体结构,在一定的时间范围和温度范围内进行大量的量热和特定于残基的动力学研究,我们首次剖析了溶剂熵和特定于残基的动力学变化对动力驱动的变构作用的相对影响程度。锌在锌外排阻遏物CzrA(染色体锌调节阻遏物)中抑制DNA结合。我们表明,变构受损的CzrA突变体中的非天然残基特异性动力学伴随着溶剂熵的显着扰动,而晶体结构无法预测。我们得出的结论是,功能动力学并不一定限于蛋白质残基,而是涉及表面水分子,这些表面水分子可能会响应配体(Zn)介导的蛋白质内部运动中的扰动,从而定义构象整体,而不是主要的结构重排。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号