首页> 美国卫生研究院文献>Journal of Healthcare Engineering >Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study
【2h】

Signal Space Separation Method for a Biomagnetic Sensor Array Arranged on a Flat Plane for Magnetocardiographic Applications: A Computer Simulation Study

机译:平面布置的用于磁心动图应用的生物磁传感器阵列的信号空间分离方法:计算机仿真研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis.
机译:尽管信号空间分离(SSS)方法可以成功地抑制与脑磁图(MEG)信号重叠的干扰/伪影,但该方法被认为不适用于非头盔型传感器阵列(例如,通常在心电图(MCG)中使用的平面传感器阵列)中的数据应用程序。本文表明,SSS方法对于从布置在平面上的(非头盔型)传感器阵列测量的数据仍然有效。通过使用计算机模拟,表明可以通过评估SSS提取器的信号和噪声增益对原点位置的依赖性来确定原点的最佳位置。参数LC和LD的最佳值分别表示内部和外部子空间的多极阶the的截断值,也可以通过评估信号,噪声和干扰增益的相关性来确定(即,屏蔽系数)。对于来自相当遥远的源头的干扰,屏蔽系数超过10 4 。但是,当存在0.1%的校准误差时,屏蔽系数降至约100;而当存在1%的校准误差时,屏蔽系数降至30。使用矢量传感器可以显着提高屏蔽能力,该矢量传感器可测量磁场的x,y和z分量。校准误差为1%时,矢量传感器阵列仍保持约500的屏蔽系数。发现将SSS应用于来自平面传感器阵列的数据会导致信号磁场失真,但显示出该失真可能是通过在体素空间分析中使用SSS修改的传感器引线场进行校正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号