首页> 美国卫生研究院文献>Frontiers in Neuroscience >Breaking Liebig’s Law: An Advanced Multipurpose Neuromorphic Engine
【2h】

Breaking Liebig’s Law: An Advanced Multipurpose Neuromorphic Engine

机译:打破李比希定律:先进的多用途神经形态引擎

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We present a massively-parallel scalable multi-purpose neuromorphic engine. All existing neuromorphic hardware systems suffer from Liebig’s law (that the performance of the system is limited by the component in shortest supply) as they have fixed numbers of dedicated neurons and synapses for specific types of plasticity. For any application, it is always the availability of one of these components that limits the size of the model, leaving the others unused. To overcome this problem, our engine adopts a unique novel architecture: an array of identical components, each of which can be configured as a leaky-integrate-and-fire (LIF) neuron, a learning-synapse, or an axon with trainable delay. Spike timing dependent plasticity (STDP) and spike timing dependent delay plasticity (STDDP) are the two supported learning rules. All the parameters are stored in the SRAMs such that runtime reconfiguration is supported. As a proof of concept, we have implemented a prototype system with 16 neural engines, each of which consists of 32768 (32k) components, yielding half a million components, on an entry level FPGA (Altera Cyclone V). We verified the prototype system with measurement results. To demonstrate that our neuromorphic engine is a high performance and scalable digital design, we implemented it using TSMC 28nm HPC technology. Place and route results using Cadence Innovus with a clock frequency of 2.5 GHz show that this engine achieves an excellent area efficiency of 1.68 μm2 per component: 256k (218) components in a silicon area of 650 μm × 680 μm (∼0.44 mm2, the utilization of the silicon area is 98.7%). The power consumption of this engine is 37 mW, yielding a power efficiency of 0.92 pJ per synaptic operation (SOP).
机译:我们提出了大规模并行可扩展的多功能神经形态引擎。现有的所有神经形态硬件系统都受李比希定律的影响(系统的性能受到供应最短缺的组件的限制),因为它们具有固定数量的专用神经元和针对特定类型可塑性的突触。对于任何应用程序来说,总是有一个组件的可用性限制了模型的大小,而其他组件则没有使用。为了克服这个问题,我们的引擎采用了独特的新颖架构:一系列相同的组件,每个组件都可以配置为泄漏集成和发射(LIF)神经元,学习突触或具有可训练延迟的轴突。 。尖峰时序相关的可塑性(STDP)和尖峰时序相关的延迟可塑性(STDDP)是两个受支持的学习规则。所有参数都存储在SRAM中,从而支持运行时重新配置。作为概念验证,我们在入门级FPGA(Altera Cyclone V)上实现了具有16个神经引擎的原型系统,每个神经引擎由32768(32k)个组件组成,产生了百万个组件。我们用测量结果验证了原型系统。为了证明我们的神经形态引擎是高性能和可扩展的数字设计,我们使用TSMC 28nm HPC技术对其进行了实现。使用Cadence Innovus(时钟频率为2.5 GHz)进行放置和布线的结果表明,该引擎每个组件的区域效率高达1.68μm 2 :256k(2 18 )组件硅面积为650μm×680μm(〜0.44 mm 2 )时,硅面积利用率为98.7%。该引擎的功耗为37 mW,每个突触操作(SOP)的功率效率为0.92 pJ。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号