首页> 美国卫生研究院文献>other >Photonic Band-Gap Resonators for High-Field/High-Frequency EPR of Microliter-Volume Liquid Aqueous Samples
【2h】

Photonic Band-Gap Resonators for High-Field/High-Frequency EPR of Microliter-Volume Liquid Aqueous Samples

机译:用于微升量液体水溶液样品的高场/高频EPR的光子带隙谐振器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-field EPR provides significant advantages for studying structure and dynamics of molecular systems possessing an unpaired electronic spin. However, routine use of high-field EPR in biophysical research, especially for aqueous biological samples, is still facing substantial technical difficulties stemming from high dielectric millimeter wave (mmW) losses associated with non-resonant absorption by water and other polar molecules. The strong absorbance of mmW’s by water also limits the penetration depth to just fractions of mm or even less, thus making fabrication of suitable sample containers rather challenging. Here we describe a radically new line of high Q-factor mmW resonators that are based on forming lattice defects in one-dimensional photonic band-gap (PBG) structures composed of low-loss ceramic discs of λ/4 in thickness and having alternating dielectric constants. A sample (either liquid or solid) is placed within the E=0 node of the standing mm wave confined within the defect. A resonator prototype has been built and tested at 94.3 GHz. The resonator performance is enhanced by employing ceramic nanoporous membranes as flat sample holders of controllable thickness and tunable effective dielectric constant. The experimental Q-factor of an empty resonator was ≈520. The Q-factor decreased slightly to ≈450 when loaded with a water-containing nanoporous disc of 50 μm in thickness. The resonator has been tested with a number of liquid biological samples and demonstrated about tenfold gain in concentration sensitivity vs. a high-Q cylindrical TE012-type cavity. Detailed HFSS Ansys simulations have shown that the resonator structure could be further optimized by properly choosing the thickness of the aqueous sample and employing metallized surfaces. The PBG resonator design is readily scalable to higher mmW frequencies and is capable of accommodating significantly larger sample volumes than previously achieved with either Fabry-Perot or cylindrical resonators.
机译:高场EPR为研究具有不成对电子自旋的分子系统的结构和动力学提供了显着的优势。然而,在生物物理研究中,特别是在水性生物样品中,常规使用高场EPR仍面临着巨大的技术困难,这是由于与水和其他极性分子的非共振吸收相关的高介电毫米波(mmW)损耗。毫米波对水的强吸收性也将渗透深度限制在毫米的几分之一甚至更少,因此使合适的样品容器的制造颇具挑战性。在这里,我们描述了一系列全新的高Q因子mmW谐振器,它们基于在一维光子带隙(PBG)结构中形成晶格缺陷,该结构由厚度为λ/ 4的低损耗陶瓷盘组成,并且具有交替的电介质常数。将样品(液体或固体)放置在缺陷内局限毫米波的E = 0节点内。已经制造出谐振器原型,并在94.3 GHz下进行了测试。通过采用陶瓷纳米多孔膜作为厚度可控制且有效介电常数可调的平坦样品支架,可增强谐振器性能。空谐振器的实验Q因子约为520。当装载有厚度为50μm的含水纳米多孔盘时,Q因子略微降低至≈450。该谐振器已经用许多液体生物样品进行了测试,并证明其浓度灵敏度是高Q圆柱TE012型腔的十倍。详细的HFSS Ansys仿真表明,通过适当选择水性样品的厚度并采用金属化表面,可以进一步优化谐振器结构。 PBG谐振器设计可轻松扩展到更高的mmW频率,并且能够容纳比以前使用Fabry-Perot或圆柱形谐振器实现的采样量大得多的采样量。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号