首页> 美国卫生研究院文献>other >On-chip pressure generation using a gel membrane fabricated outside of the microfluidic network
【2h】

On-chip pressure generation using a gel membrane fabricated outside of the microfluidic network

机译:使用在微流体网络外部制造的凝胶膜产生芯片上压力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

On-chip generation of pressure gradients via electrokinetic means can offer several advantages to microfluidic assay design and operation in a variety of applications. In this article, we describe a simple approach to realizing this capability by employing a polyacrylamide-based gel structure fabricated within a fluid reservoir located at the terminating end of a microchannel. Application of an electric field across this membrane has been shown to block a majority of the electroosmotic flow generated within the open duct yielding a high pressure at the channel–membrane junction. Experiments show the realization of higher pressure-driven velocities in an electric field-free separation channel integrated to the micropump with this design compared to other similar micropumps described in the literature. In addition, the noted velocity was found to be less sensitive to the extent of Debye layer overlap in the channel network, and therefore more impressive when working with background electrolytes having higher ionic strengths. With the current system, pressure-driven velocities up to 3.6 mm/s were realized in a 300-nm-deep separation channel applying a maximum voltage of 3 kV at a channel terminal. To demonstrate the separative performance of our device, a nanofluidic pressure-driven ion-chromatographic analysis was subsequently implemented that relied on the slower migration of cationic analytes relative to the neutral and anionic ones in the separation channel likely due to their strong electrostatic interaction with the channel surface charges. A mixture of amino acids was thus separated with resolutions greater than those reported by our group for a similar analysis previously.
机译:通过电动手段在芯片上生成压力梯度可以为微流体分析设计和各种应用中的操作提供多个优势。在本文中,我们描述了一种简单的方法来实现这一功能,方法是采用在微通道末端的储液罐中制造的聚丙烯酰胺基凝胶结构。已经证明,在该膜上施加电场会阻止在开放管道内产生的大部分电渗流,从而在通道-膜连接处产生高压。实验表明,与文献中描述的其他类似微型泵相比,通过这种设计,在集成到微型泵的无电场分离通道中实现了更高的压力驱动速度。另外,发现所述速度对德拜层在通道网络中的重叠程度较不敏感,因此在使用具有较高离子强度的背景电解质时更为令人印象深刻。在当前系统中,在300 nm深的分离通道中,在通道端子处施加3 kV的最大电压,从而实现了高达3.6 mm / s的压力驱动速度。为了证明我们设备的分离性能,随后进行了纳米流体压力驱动的离子色谱分析,该分析依靠阳离子分析物相对于中性和阴离子在分离通道中的迁移较慢,这可能是由于它们与强力的静电相互作用所致。通道表面电荷。因此,分离出的氨基酸混合物的分离度比我们小组先前进行的类似分析所报道的分离度高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号