首页> 美国卫生研究院文献>ACS Omega >Prediction of Thermodynamic Properties of LevulinicAcid via Molecular Simulation Techniques
【2h】

Prediction of Thermodynamic Properties of LevulinicAcid via Molecular Simulation Techniques

机译:预测蛋白的热力学性质酸通过分子模拟技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Second-generation biofuels are a complex mixture of organic compounds that can be further processed to hydrocarbon fuels and other valuable chemicals. One such chemical is levulinic acid (IUPAC name: 4-oxo pentanoic acid), which is a highly versatile ketoacid obtained from cellulose present in agricultural byproducts. For oxygen-containing compounds that decompose at elevated temperatures and pressures, determining the vapor–liquid equilibria data at high temperatures via the experimental route may be challenging. The molecular simulation approach is a cost-effective tool to obtain the necessary data while also allowing us to understand the microscopic origins of macroscopic observable properties. We have employed the transferable potential for phase equilibria-united atom force field to describe the interactions in this system with the parameters for a torsional interaction that are not reported in the literature (levulinic acid is a ketoacid) being determined from density functional theory calculations. We have verified our parameterization via density computations in the isothermal–isobaricensemble and by comparing our simulation results with the correspondingdata from experiments reported in the literature. We have performedgrand-canonical transition-matrix Monte Carlo simulations in the temperaturerange from 580 to 690 K to estimate the vapor–liquid coexistencecurves in the temperature–density plane and the Clapeyron plots.From this data, the critical point (TC = 755 K, ρC = 285.4 kg/m3, and PC = 30.57 bar) has been estimated, and thismay be used as input to the equations of state employed in processsimulation software for design of industrial separation processesincluding those for “biorefining”. As levulinic acidis a “ketoacid”, hydrogen bonding occurs, and the liquidphase structure has also been studied using radial distribution functions.
机译:第二代生物燃料是有机化合物的复杂混合物,可以进一步加工为碳氢化合物燃料和其他有价值的化学物质。一种这样的化学品是乙酰丙酸(IUPAC名称:4-氧代戊酸),它是一种高度通用的酮酸,是从农业副产品中的纤维素中获得的。对于在升高的温度和压力下分解的含氧化合物,通过实验路线确定高温下的气液平衡数据可能具有挑战性。分子模拟方法是获得必要数据的一种经济有效的工具,同时还使我们能够了解宏观可观察特性的微观起源。我们已经利用相平衡单元的原子力场的可转移势来描述该系统中的相互作用,并且没有通过密度泛函理论计算确定文献中报道的扭转相互作用参数(乙酰丙酸是一种酮酸)。我们已经通过等温-等压中的密度计算验证了我们的参数化并通过将我们的仿真结果与相应的仿真结果进行比较文献报道的实验数据。我们已经执行了温度下的大正则转变矩阵蒙特卡罗模拟范围从580到690 K,以估计气液共存温度-密度平面上的曲线和Clapeyron图。根据这些数据,可以估算出临界点(TC = 755 K,ρC= 285.4 kg / m 3 ,PC = 30.57 bar),并且可用作过程中使用的状态方程的输入用于工业分离过程设计的仿真软件包括用于“生物精炼”的产品。作为乙酰丙酸是“酮酸”,发生氢键作用,液体还使用径向分布函数研究了相结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号