首页> 美国卫生研究院文献>other >Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms
【2h】

Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms

机译:低频误差放大反馈改善精确力控制:行为和神经生理机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although error amplification (EA) feedback has been shown to improve performance on visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant information that may impair visuomotor control. The purpose of this study was to improve the force control in a static task by preclusion of high-oscillatory components in EA feedback that cannot be timely used for error correction by the visuomotor system. Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc) were modeled with non-linear SDA to contrast the reliance of the feedback process and underlying neurophysiological mechanisms by using real feedback, EA, and low-frequency error amplification (LF-EA). During the static force task in the experiment, the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did not channel high-frequency errors above 0.8 Hz into the amplification process. The results showed that task accuracy was greater with the LF-EA than with the real and EA feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term effective diffusion coefficient, and short-term exponent scaling) than did real feedback and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but decreased the RMS of the mean discharge rate, estimated with pooled MU spike trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition were the greatest among the three feedback conditions. In summary, amplification of low-frequency errors improves force control by shifting the relative significances of the feedforward and feedback processes. The functional benefit arises from the increase in the common descending drive to promote a stable state of MU discharges.
机译:尽管已显示误差放大(EA)反馈可改善视觉运动任务的性能,但EA的挑战在于它同时放大了与任务无关的信息,这些信息可能会损害视觉运动控制。这项研究的目的是通过排除EA反馈中不能及时用于视觉运动系统进行错误校正的高振动分量来改善静态任务中的力控制。除了运动单位行为和皮质肌相干性以外,还使用非线性SDA对力波动(Fc)进行建模,以通过使用真实反馈,EA和低频误差放大(LF-EA)来对比反馈过程和潜在的神经生理机制的依赖性)。在实验中的静态力任务期间,EA反馈实际上增强了视觉误差的大小,而LF-EA并未将高于0.8 Hz的高频误差引导到放大过程中。结果表明,LF-EA的任务准确性要高于真实和EA反馈模式,并且LF-EA导致更小,更复杂的Fc。与真实反馈和EA相比,LF-EA通常导致Fc的SDA变量(临界时间点,Fc临界点,短期有效扩散系数和短期指数缩放)更小。 LF-EA反馈的使用增加了MU的ISI的不规则性,但降低了平均放电速率的RMS(用合并的MU尖峰列估计)。在三种反馈条件下,LF-EA条件下的β范围EEG–EMG相干光谱(13–35 Hz)最大。总之,低频误差的放大通过改变前馈和反馈过程的相对重要性来改善力控制。功能上的好处来自共同下降驱动器的增加,以促进MU放电的稳定状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号