首页> 美国卫生研究院文献>other >Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model
【2h】

Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model

机译:用新的数据驱动的计算模型重新审查了哺乳动物呼吸振荡器中的生物物理机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An autorhythmic population of excitatory neurons in the brainstem pre-Bötzinger complex is a critical component of the mammalian respiratory oscillator. Two intrinsic neuronal biophysical mechanisms—a persistent sodium current (INaP) and a calcium-activated non-selective cationic current (ICAN)—were proposed to individually or in combination generate cellular- and circuit-level oscillations, but their roles are debated without resolution. We re-examined these roles in a model of a synaptically connected population of excitatory neurons with ICAN and INaP. This model robustly reproduces experimental data showing that rhythm generation can be independent of ICAN activation, which determines population activity amplitude. This occurs when ICAN is primarily activated by neuronal calcium fluxes driven by synaptic mechanisms. Rhythm depends critically on INaP in a subpopulation forming the rhythmogenic kernel. The model explains how the rhythm and amplitude of respiratory oscillations involve distinct biophysical mechanisms.
机译:脑干前玻辛格复合体中兴奋性神经元的自律性种群是哺乳动物呼吸振荡器的重要组成部分。两种固有的神经元生物物理机制-持续的钠电流( I N a P )和钙激活的非选择性阳离子电流(<数学xmlns:mml =“ http://www.w3.org/1998/Math/MathML” id =“ inf2”溢出=“ scroll”> I C A N )—提出单独或组合生成单元级和电路级振荡,但争论中它们的作用没有解决方案。我们在具有 I C A N N a P 。该模型可靠地重现了实验数据,显示出节奏的产生可以独立于 I C A N 激活,它确定种群活动幅度。当 I C A N 主要由神经元钙激活由突触机制驱动的通量。节奏严重取决于 I N a P 在形成有节奏的内核。该模型解释了呼吸振荡的节奏和幅度如何涉及独特的生物物理机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号