首页> 美国卫生研究院文献>other >Approaches to Computational Strain Design in the Multiomics Era
【2h】

Approaches to Computational Strain Design in the Multiomics Era

机译:多元组学时代的计算应变设计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern omics analyses are able to effectively characterize the genetic, regulatory, and metabolic phenotypes of engineered microbes, yet designing genetic interventions to achieve a desired phenotype remains challenging. With recent developments in genetic engineering techniques, timelines associated with building and testing strain designs have been greatly reduced, allowing for the first time an efficient closed loop iteration between experiment and analysis. However, the scale and complexity associated with multi-omics datasets complicates manual biological reasoning about the mechanisms driving phenotypic changes. Computational techniques therefore form a critical part of the Design-Build-Test-Learn (DBTL) cycle in metabolic engineering. Traditional statistical approaches can reduce the dimensionality of these datasets and identify common motifs among high-performing strains. While successful in many studies, these methods do not take full advantage of known connections between genes, proteins, and metabolic networks. There is therefore a growing interest in model-aided design, in which modeling frameworks from systems biology are used to integrate experimental data and generate effective and non-intuitive design predictions. In this mini-review, we discuss recent progress and challenges in this field. In particular, we compare methods augmenting flux balance analysis with additional constraints from fluxomic, genomic, and metabolomic datasets and methods employing kinetic representations of individual metabolic reactions, and machine learning. We conclude with a discussion of potential future directions for improving strain design predictions in the omics era and remaining experimental and computational hurdles.
机译:现代组学分析能够有效地表征工程微生物的遗传,调节和代谢表型,但是设计遗传干预以实现所需表型仍然具有挑战性。随着基因工程技术的最新发展,与构建和测试菌株设计相关的时间线已大大减少,这首次使实验和分析之间实现了有效的闭环迭代。但是,与多组学数据集相关的规模和复杂性使有关驱动表型变化的机制的人工生物学推理变得复杂。因此,计算技术构成了代谢工程中设计,构建,测试,学习(DBTL)周期的关键部分。传统的统计方法可以降低这些数据集的维数,并识别高性能菌株之间的常见基序。尽管这些方法在许多研究中都取得了成功,但并未充分利用基因,蛋白质和代谢网络之间的已知联系。因此,对模型辅助设计的兴趣日益增长,在模型辅助设计中,系统生物学的建模框架用于集成实验数据并生成有效且非直观的设计预测。在此小型审查中,我们讨论了该领域的最新进展和挑战。特别是,我们比较了通量平衡,基因组和代谢组学数据集中附加约束条件下增加通量平衡分析的方法,以及采用单个代谢反应的动力学表示和机器学习的方法。最后,我们讨论了在组学时代改善应变设计预测的潜在未来方向以及剩余的实验和计算障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号