首页> 美国卫生研究院文献>other >Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone
【2h】

Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone

机译:高纬深氧最小区中好氧和厌氧氨气氧化剂的生态位分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To elucidate the potential for nitrification and denitrification processes in a high latitude deep oxygen minimum zone (OMZ) we determined the abundance and community composition of the main microbial players in the aerobic and anaerobic (anammox) ammonium oxidation and denitrification processes in the Gulf of Alaska throughout the water column. Within the dominant bacterial groups, Flavobacterales, Rhodobacterales, Actinomarinales, and SAR86 were more abundant in epipelagic waters and decreased with depth, whereas SAR11, SAR324, Marinimicrobia, and Thiomicrospirales increased their contribution to the bacterial community with depth. Nitrosopumilaceae also increased with depth and dominated the OMZ and bathypelagic archaeal communities. Euryarchaeota Marine Group II exhibited an opposite depth pattern to Nitrosopumilaceae, whereas Marine Group III and Woesearchaeota were more abundant in the bathypelagic realm. Candidatus Brocadia contributed 70–100% of the anammox bacterial community throughout the water column. Archaeal ammonia oxidizers (AOA) dominated the microbial community involved in the nitrogen cycle. Two AOA ecotypes, the high ammonia (HAC) and low ammonia (LAC)-AOA, characterized by distinct genes for aerobic ammonia oxidation (amoA) and for denitrification (nirK), exhibited a distinct distribution pattern related to depth and ammonia concentrations. HAC-AOA dominated in epipelagic (80.5 ± 28.3% of total AOA) oxygenated and ammonia-rich waters, and LAC-AOA dominated in the OMZ (90.9 ± 5.1%) and bathypelagic waters (85.5 ± 13.5%), characterized by lower oxygen and ammonia concentrations. Bacterial denitrifiers (3.7 ± 6.9 bacterial nirK gene mL−1) and anaerobic ammonia oxidizers (78 ± 322 anammox 16S rRNA genes L−1) were low in abundance under the oxygen conditions in the Gulf of Alaska throughout the water column. The widespread distribution of bacterial denitrifiers and anaerobic ammonia oxidizers in low abundances reveals a reservoir of genetic and metabolic potential ready to colonize the environment under the predicted increase of OMZs in the ocean. Taken together, our results reinforce the niche partitioning of archaeal ammonia oxidizers based on their distinct metabolic characteristics resulting in the dominance of LAC-AOA in a high latitude deep OMZ. Considering the different ecological roles and functions of the two archaeal ecotypes, the expansion of the zones dominated by the LAC-ecotype might have implications for the nitrogen cycle in the future ocean.
机译:为了阐明高纬度深氧最小区(OMZ)中硝化和反硝化过程的潜力,我们确定了阿拉斯加湾有氧和厌氧(厌氧氨)铵氧化和反硝化过程中主要微生物参与者的丰度和群落组成整个水柱。在优势细菌群中,表皮水域中的黄杆菌属,红细菌菌,猕猴桃属和SAR86含量较高,并且随着深度的增加而降低,而SAR11,SAR324,Marinimicrobia和Thiomicrospirales细菌对细菌群落的贡献随着深度的增加而增加。亚硝基眼科也随着深度的增加而增加,并主导了OMZ和水生古细菌群落。 Euryarchaeota海洋生物群II的深度模式与鸭眼菌科相反,而海洋深水鱼类界的Marine Group III和Woesearchaeota则更为丰富。在整个水柱中,念珠菌贡献了70-100%的厌氧菌群落。古细菌氨氧化剂(AOA)主导了参与氮循环的微生物群落。两种AOA生态型,高氨(HAC)和低氨(LAC)-AOA,以需氧氨氧化(amoA)和反硝化(nirK)的不同基因为特征,表现出与深度和氨浓度相关的独特分布模式。 HAC-AOA在表层上水(占总AOA的80.5±28.3%)充氧和富氨水中占主导地位,而LAC-AOA在OMZ(90.9±5.1%)和浮游水(85.5±13.5%)中占主导地位,其特征在于氧气含量较低和氨浓度。在氧气下,细菌反硝化剂(3.7±6.9细菌nirK基因mL −1 )和厌氧氨氧化器(78±322厌氧菌16S rRNA基因L -1 )的含量低整个水柱中阿拉斯加湾的气候条件。低丰度细菌反硝化剂和厌氧氨氧化剂的广泛分布表明,在海洋中预计的OMZ增长下,遗传和代谢潜力库随时可以在环境中定殖。综上所述,我们的结果基于其独特的代谢特征,增强了古细菌氨氧化剂的生态位分配,从而导致了LAC-AOA在高纬度深层OMZ中的优势地位。考虑到两种古生生态型的不同生态作用和功能,以LAC生态型为主的区域的扩展可能对未来海洋的氮循环有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号