首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation
【2h】

Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

机译:增材制造的支架结构对表面菌株分布和流体剪切应力及预期的软骨细胞分化的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.
机译:用于再生医学的支架应指导细胞以适当的信号(包括生物物理刺激,如压力和应变)形成所需的组织。除此之外,脚手架,尤其是用于承重应用的脚手架,应该能够提供机械稳定性。由于支架的强度和应力应变分布均取决于支架的内部架构,因此了解架构变化如何影响这些参数非常重要。在这项研究中,使用增材制造技术生产了四种具有不同架构的脚手架设计。设计在纤维方向上有所不同,而纤维直径,间距和层高保持不变。基于micro-CT(μCT)扫描,导出了用于有限元分析(FEA)和计算流体力学(CFD)的有限元模型(FEM)。支架压缩的有限元分析已使用μCT压缩支架扫描数据进行了验证。 FEA和CFD的结果显示了支架结构对流体剪切应力和机械应变分布的显着影响。平均流体剪切应力范围从0/90架构的3.6 mPa到0/90偏移架构的6.8 mPa,表面剪切应变从0/90偏移架构的0.0096到0/90架构的0.0214。随后导致支架表面上预测的细胞分化刺激值的变化。流体剪切应力主要受孔的形状和大小影响,而机械应变分布主要取决于支架结构中支撑柱的存在与否。在一起,这些结果证实了可以利用支架结构来设计具有指导在压缩和灌注下特定组织发育的区域的支架。结合生物反应器培养过程中的刺激方案的优化,支架结构的优化可用于组织设计目的改善支架设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号