首页> 美国卫生研究院文献>The Journal of General Physiology >Neutralization of Gating Charges in Domain II of the Sodium Channel α Subunit Enhances Voltage-Sensor Trapping by a β-Scorpion Toxin
【2h】

Neutralization of Gating Charges in Domain II of the Sodium Channel α Subunit Enhances Voltage-Sensor Trapping by a β-Scorpion Toxin

机译:钠通道α亚基的结构域II中的门控电荷的中和增强了β-蝎毒素的电压传感器捕获。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

β-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3–S4 loop at the extracellular end of the S4 voltage sensor in domain II of the α subunit. Here, we probe the role of gating charges in the IIS4 segment in β-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances β-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the β-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from −80 to −140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor–trapping model in which the β-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.
机译:β-蝎毒素将钠通道激活的电压依赖性转变为更多的负膜电位,但仅在强去极化预脉冲完全激活通道后才发生。它们的受体位点在α亚基II区的S4电压传感器的细胞外端包括S3-S4环。在这里,我们通过诱变和所得突变体钠通道的功能分析,探讨了IIS4区段中门控电荷在β蝎毒素作用中的作用。通过突变为谷氨酰胺来中和IIS4区段中带正电荷的氨基酸残基,将通道激活的电压依赖性转移到更正的膜电位,并降低了电压依赖性门控的陡度,这与这些残基作为门控的推测作用是一致的收费。出人意料的是,突变R850Q,R850C,R853Q和R853C中和IIS4区段外端的门控电荷显着增强了β蝎毒素的作用,而突变R856Q,K859Q和K862Q没有作用。与野生型相反,β蝎毒素Css IV导致突变体R853Q和R853C的激活电压依赖性发生负移,而在保持电位从-80至-140 mV时没有去极化预脉冲。突变体R853C与2-氨基乙基甲硫基磺酸盐的反应引起激活电压依赖性的正移,并恢复了对Css IV作用的去极化预脉冲的要求。 Css IV增强钠通道激活后,在复极化时会引起较大的尾电流,这表明结合毒素会导致IIS4电压传感器的失活减慢。我们的结果与电压传感器捕获模型一致,该模型中,当蝎子毒素响应去极化而向外移动并保持在那里时,β蝎毒素将IIS4电压传感器捕获在其激活位置,从而减慢了其向内运动并增强了后续功能频道激活。显然,R850和R853的中和作用消除了Css IV结合IIS4区段的动力学障碍,从而增强了毒素诱导的通道活化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号