首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Quantification and reduction of peripheral dose from leakage radiation on Siemens primus accelerators in electron therapy mode
【2h】

Quantification and reduction of peripheral dose from leakage radiation on Siemens primus accelerators in electron therapy mode

机译:在电子治疗模式下量化和减少西门子Primus加速器上泄漏辐射引起的周围剂量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, leakage radiation from EA200 series electron applicators on Siemens Primus accelerators is quantified, and its penetration ability in water and/or the shielding material Xenolite‐NL established. Initially, measurement of leakage from 10 × 10 − 25 × 25 cm2 applicators was performed as a function of height along applicator and of lateral distance from applicator body. Relative to central‐axis ionization maximum in solid water, the maximum leakage in air observed with a cylindrical ion chamber with 1 cm solid water buildup cap at a lateral distance of 2 cm from the front and right sidewalls of applicators were 17% and 14%, respectively; these maxima were recorded for 18 MeV electron beams and applicator sizes of  ≥ 20 × 20 cm2. In the patient plane, the applicator leakage gave rise to a broad peripheral dose off‐axis distance peak that shifted closer to the field edge as the electron energy increases. The maximum peripheral dose from normally incident primary electron beams at a depth of 1 cm in a water phantom was observed to be equal to 5% of the central‐axis dose maximum and as high as 9% for obliquely incident beams with angles of obliquity  ≤  40°. Measured depth‐peripheral dose curves showed that the “practical range” of the leakage electrons in water varies from approximately 1.4 to 5.7 cm as the primary electron beam energy is raised from 6 to 18 MeV. Next, transmission measurements of leakage radiation through the shielding material Xenolite‐NL showed a 4 mm thick sheet of this material is required to attenuate the leakage from 9 MeV beams by two‐thirds, and that for every additional 3 MeV increase in the primary electron beam energy, an additional Xenolite‐NL thickness of roughly 2 mm is needed to achieve the aforementioned attenuation level. Finally, attachment of a 1 mm thick sheet of lead to the outer surface of applicator sidewalls resulted in a reduction of the peripheral dose by up to 80% and 74% for 9 and 18 MeV beams, respectively. This sidewall modification had an insignificant effect on the clinical depth dose, cross‐axis beam profiles, and output factors.PACS numbers: 87.53.Bn, 87.56.bd, 87.56.J‐
机译:在这项工作中,对来自Siemens Primus加速器上EA200系列电子施加器的泄漏辐射进行了定量,并确定了其在水和/或Xenolite-NL屏蔽材料中的渗透能力。最初,根据沿涂抹器的高度和距涂抹器主体的横向距离的函数,测量10×10 − 25×25×cm 2 涂抹器的泄漏量。相对于固体水中的中心轴电离最大值,在距离施药器前后侧壁2 cm的侧向距离为2 cm的带有1 cm固体水积聚帽的圆柱形离子室中观察到的最大空气泄漏为17%和14% , 分别;记录了18 MeV电子束的最大最大值,涂药器尺寸为≥20×20 cm 2 。在患者平面中,施药器泄漏导致较宽的外围剂量离轴距离峰,当电子能量增加时,该峰移近场边缘。观察到在水模中深度为1 cm的垂直入射主电子束的最大外围剂量等于中心轴最大剂量的5%,对于倾斜角为≤的倾斜入射束,其最大剂量为9% 40°。测得的深度-外围剂量曲线表明,随着初级电子束能量从6 MeV升高到18 MeV,水中泄漏电子的“实际范围”从约1.4到5.7 cm变化。接下来,通过屏蔽材料Xenolite-NL的泄漏辐射的传输测量结果表明,需要使用4 mm厚的这种材料来将9 MeV束的泄漏衰减三分之二,并且每增加3 MeV,一次电子就增加光束能量,需要额外的大约2 mm的Xenolite-NL厚度才能达到上述衰减水平。最后,将一张1毫米厚的铅片附着到敷料器侧壁的外表面上,可使9和18 MeV束的外围剂量分别减少多达80%和74%。这种侧壁修饰对临床深度剂量,横轴光束轮廓和输出因子影响不显着.PACS编号:87.53.Bn,87.56.bd,87.56.J-

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号