首页> 美国卫生研究院文献>Nanoscale Research Letters >Quantum conductance of silicon-doped carbon wire nanojunctions
【2h】

Quantum conductance of silicon-doped carbon wire nanojunctions

机译:硅掺杂碳线纳米结的量子电导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unknown quantum electronic conductance across nanojunctions made of silicon-doped carbon wires between carbon leads is investigated. This is done by an appropriate generalization of the phase field matching theory for the multi-scattering processes of electronic excitations at the nanojunction and the use of the tight-binding method. Our calculations of the electronic band structures for carbon, silicon, and diatomic silicon carbide are matched with the available corresponding density functional theory results to optimize the required tight-binding parameters. Silicon and carbon atoms are treated on the same footing by characterizing each with their corresponding orbitals. Several types of nanojunctions are analyzed to sample their behavior under different atomic configurations. We calculate for each nanojunction the individual contributions to the quantum conductance for the propagating σ, Π, and σelectron incidents from the carbon leads. The calculated results show a number of remarkable features, which include the influence of the ordered periodic configurations of silicon-carbon pairs and the suppression of quantum conductance due to minimum substitutional disorder and artificially organized symmetry on these nanojunctions. Our results also demonstrate that the phase field matching theory is an efficient tool to treat the quantum conductance of complex molecular nanojunctions.
机译:研究了碳引线之间由掺硅碳线制成的纳米结上未知的量子电子电导。这是通过对纳米结处电子激发的多散射过程的相场匹配理论的适当概括以及使用紧密结合方法来完成的。我们对碳,硅和双原子碳化硅的电子能带结构的计算与可用的相应密度泛函理论结果相匹配,以优化所需的紧密结合参数。硅和碳原子通过在其各自的轨道上进行特征描述而在相同的基础上进行处理。分析了几种类型的纳米结,以采样它们在不同原子构型下的行为。我们为每个纳米结计算了碳引线中传播的σ,Π和σ电子事件对量子电导的贡献。计算结果显示出许多显着的特征,包括硅碳对的有序周期性构型的影响以及由于最小取代无序和人为组织的对称性而对这些纳米结产生的量子电导的抑制。我们的研究结果还表明,相场匹配理论是一种有效的工具,可用于处理复杂分子纳米结的量子电导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号