首页> 美国卫生研究院文献>Ecology and Evolution >Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N
【2h】

Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N

机译:河口和海洋红树林生态系统中的土壤有机碳储量受磷和氮养分共限的驱动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land‐to‐sea gradients. SOC stocks in natural marine mangroves (271–572 Mg ha−1 m−1) were much higher than under estuarine mangroves (100–315 Mg ha−1 m−1) with a further decrease caused by degradation to 80–132 Mg ha−1 m−1. Soils differed in C/N ratio (marine: 29–64; estuarine: 9–28), δ 15N (marine: −0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant‐available P (marine: 2.3–6.3 mg kg−1; estuarine: 0.16–1.8 mg kg−1). We found N and P supply of sea‐oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land‐to‐sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large‐scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes.
机译:红树林在固碳中起着重要作用,但海洋和河口红树林的土壤有机碳(SOC)存量不同,这表明SOC积累的过程和驱动因素不同。在这里,我们在整个印度尼西亚群岛的区域方法中比较了未退化和退化的海洋和河口红树林的SOC存量,并评估了陆地-海洋梯度上养分限制带来的可能驱动因素。天然海洋红树林(271-572 Mg ha −1 m -1 )的SOC含量远高于河口红树林(100-315 Mg ha -1 m −1 ),并由于降解至80–132 Mg ha -1 m -1 而进一步降低。土壤的碳氮比(海洋:29–64;河口:9–28),δ 15 N(海洋:-0.6至0.7‰;河口:2.5至7.2‰)和植物不同可用的P(海洋:2.3–6.3 mg kg -1 ;河口:0.16–1.8 mg kg kg -1 )。我们发现,主要通过控制从空气中共生的N2固定和从海中进口的P来满足海洋红树林的N和P供应,而陆上梯度的红树林越来越多地满足了来自异源和SOM回收的N和P的需求。受降解影响的先锋植物进一步增加了土壤中的养分循环利用,导致表层土壤中的SOC存量减少。这些过程解释了每种红树林类型沿陆-海梯度的SOC量差异,以及在河口和海洋红树林生态系统之间观察到的SOC量差异。因此,首次对红树林中的SOC储量驱动因素进行的大规模评估表明,红树林在各个规模和生态类型上均具有连续性,并为PES或REDD计划中的碳储量估算提供了可行的代理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号