首页> 美国卫生研究院文献>Genome Biology and Evolution >Protein–Protein Interfaces from Cytochrome c Oxidase I Evolve Faster than Nonbinding Surfaces yet Negative Selection Is the Driving Force
【2h】

Protein–Protein Interfaces from Cytochrome c Oxidase I Evolve Faster than Nonbinding Surfaces yet Negative Selection Is the Driving Force

机译:细胞色素c氧化酶I的蛋白质-蛋白质界面比非结合表面的进化速度更快而负选择是驱动力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Respiratory complexes are encoded by two genomes (mitochondrial DNA [mtDNA] and nuclear DNA [nDNA]). Although the importance of intergenomic coadaptation is acknowledged, the forces and constraints shaping such coevolution are largely unknown. Previous works using cytochrome c oxidase (COX) as a model enzyme have led to the so-called “optimizing interaction” hypothesis. According to this view, mtDNA-encoded residues close to nDNA-encoded residues evolve faster than the rest of positions, favoring the optimization of protein–protein interfaces. Herein, using evolutionary data in combination with structural information of COX, we show that failing to discern the effects of interaction from other structural and functional effects can lead to deceptive conclusions such as the “optimizing hypothesis.” Once spurious factors have been accounted for, data analysis shows that mtDNA-encoded residues engaged in contacts are, in general, more constrained than their noncontact counterparts. Nevertheless, noncontact residues from the surface of COX I subunit are a remarkable exception, being subjected to an exceptionally high purifying selection that may be related to the maintenance of a suitable heme environment. We also report that mtDNA-encoded residues involved in contacts with other mtDNA-encoded subunits are more constrained than mtDNA-encoded residues interacting with nDNA-encoded polypeptides. This differential behavior cannot be explained on the basis of predicted thermodynamic stability, as interactions between mtDNA-encoded subunits contribute more weakly to the complex stability than those interactions between subunits encoded by different genomes. Therefore, the higher conservation observed among mtDNA-encoded residues involved in intragenome interactions is likely due to factors other than structural stability.
机译:呼吸复合物由两个基因组(线粒体DNA [mtDNA]和核DNA [nDNA])编码。尽管人们认识到基因组间协同的重要性,但形成这种协同进化的力量和制约因素仍然未知。以前使用细胞色素C氧化酶(COX)作为模型酶的工作导致了所谓的“优化相互作用”假说。根据这种观点,接近nDNA编码残基的mtDNA编码残基的进化速度快于其余位置,从而有利于蛋白质-蛋白质界面的优化。在本文中,我们将进化数据与COX的结构信息结合使用,表明无法从其他结构和功能效应中识别出相互作用的影响,可能会得出诸如“优化假设”之类的欺骗性结论。一旦考虑了虚假因素,数据分析表明,参与接触的mtDNA编码残基通常比非接触对应的残基更受约束。然而,来自COX I亚基表面的非接触残基是一个显着的例外,它受到极高的纯化选择,这可能与维持合适的血红素环境有关。我们还报告说,与其他mtDNA编码的亚基接触所涉及的mtDNA编码的残基比与nDNA编码的多肽相互作用的mtDNA编码的残基更受约束。不能基于预测的热力学稳定性来解释这种差异行为,因为与不同基因组编码的亚基之间的相互作用相比,mtDNA编码的亚基之间的相互作用对复杂稳定性的影响更弱。因此,在基因组内相互作用中涉及的mtDNA编码残基中观察到的较高保守性可能是由于结构稳定性以外的因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号