首页> 美国卫生研究院文献>Journal of Applied Clinical Medical Physics >Reproducibility of F18‐FDG PET radiomic features for different cervical tumor segmentation methods gray‐level discretization and reconstruction algorithms
【2h】

Reproducibility of F18‐FDG PET radiomic features for different cervical tumor segmentation methods gray‐level discretization and reconstruction algorithms

机译:F18-FDG PET放射特征在不同子宫颈肿瘤分割方法灰度离散化和重建算法上的可重复性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Site‐specific investigations of the role of radiomics in cancer diagnosis and therapy are emerging. We evaluated the reproducibility of radiomic features extracted from 18Flourine–fluorodeoxyglucose (18F‐FDG) PET images for three parameters: manual versus computer‐aided segmentation methods, gray‐level discretization, and PET image reconstruction algorithms. Our cohort consisted of pretreatment PET/CT scans from 88 cervical cancer patients. Two board‐certified radiation oncologists manually segmented the metabolic tumor volume (MTV1 and MTV2) for each patient. For comparison, we used a graphical‐based method to generate semiautomated segmented volumes (GBSV). To address any perturbations in radiomic feature values, we down‐sampled the tumor volumes into three gray‐levels: 32, 64, and 128 from the original gray‐level of 256. Finally, we analyzed the effect on radiomic features on PET images of eight patients due to four PET 3D‐reconstruction algorithms: maximum likelihood‐ordered subset expectation maximization (OSEM) iterative reconstruction (IR) method, fourier rebinning‐ML‐OSEM (FOREIR), FORE‐filtered back projection (FOREFBP), and 3D‐Reprojection (3DRP) analytical method. We extracted 79 features from all segmentation method, gray‐levels of down‐sampled volumes, and PET reconstruction algorithms. The features were extracted using gray‐level co‐occurrence matrices (GLCM), gray‐level size zone matrices (GLSZM), gray‐level run‐length matrices (GLRLM), neighborhood gray‐tone difference matrices (NGTDM), shape‐based features (SF), and intensity histogram features (IHF). We computed the Dice coefficient between each MTV and GBSV to measure segmentation accuracy. Coefficient values close to one indicate high agreement, and values close to zero indicate low agreement. We evaluated the effect on radiomic features by calculating the mean percentage differences (d¯) between feature values measured from each pair of parameter elements (i.e. segmentation methods: MTV1‐MTV2, MTV1‐GBSV, MTV2‐GBSV; gray‐levels: 64‐32, 64‐128, and 64‐256; reconstruction algorithms: OSEM‐FORE‐OSEM, OSEM‐FOREFBP, and OSEM‐3DRP). We used |d¯| as a measure of radiomic feature reproducibility level, where any feature scored |d¯| ±SD ≤ |25|% ± 35% was considered reproducible. We used Bland–Altman analysis to evaluate the mean, standard deviation (SD), and upper/lower reproducibility limits (U/LRL) for radiomic features in response to variation in each testing parameter. Furthermore, we proposed U/LRL as a method to classify the level of reproducibility: High— ±1% ≤ U/LRL ≤ ±30%; Intermediate— ±30% < U/LRL ≤ ±45%; Low— ±45 < U/LRL ≤ ±50%. We considered any feature below the low level as nonreproducible (NR). Finally, we calculated the interclass correlation coefficient (ICC) to evaluate the reliability of radiomic feature measurements for each parameter. The segmented volumes of 65 patients (81.3%) scored Dice coefficient >0.75 for all three volumes. The result outcomes revealed a tendency of higher radiomic feature reproducibility among segmentation pair MTV1‐GBSV than MTV2‐GBSV, gray‐level pairs of 64‐32 and 64‐128 than 64‐256, and reconstruction algorithm pairs of OSEM‐FOREIR and OSEM‐FOREFBP than OSEM‐3DRP. Although the choice of cervical tumor segmentation method, gray‐level value, and reconstruction algorithm may affect radiomic features, some features were characterized by high reproducibility through all testing parameters. The number of radiomic features that showed insensitivity to variations in segmentation methods, gray‐level discretization, and reconstruction algorithms was 10 (13%), 4 (5%), and 1 (1%), respectively. These results suggest that a careful analysis of the effects of these parameters is essential prior to any radiomics clinical application.
机译:关于放射组学在癌症诊断和治疗中作用的针对特定地点的研究正在兴起。我们评估了从 18 面粉-氟脱氧葡萄糖( 18 F-FDG)PET图像中提取的放射学特征的三个参数的可再现性:手动与计算机辅助分割方法,灰度级离散化和PET图像重建算法。我们的队列包括对88例宫颈癌患者进行的PET / CT预处理扫描。两名经董事会认证的放射肿瘤学家为每位患者手动分割了代谢肿瘤的体积(MTV1和MTV2)。为了进行比较,我们使用了基于图形的方法来生成半自动分段卷(GBSV)。为了解决放射特征值的任何扰动,我们将肿瘤体积从原始灰度256下采样为三个灰度级:32、64和128。最后,我们分析了PET图像对放射特征的影响四种PET 3D重建算法使8名患者受益:最大似然排序子集期望最大化(OSEM)迭代重建(IR)方法,傅里叶重组ML-OSEM(FOREIR),FORE滤波反投影(FOREFBP)和3D-重投影(3DRP)分析方法。我们从所有分割方法,降采样量的灰度级和PET重建算法中提取了79个特征。使用灰度共现矩阵(GLCM),灰度大小区域矩阵(GLSZM),灰度游程长度矩阵(GLRLM),邻域灰度色调差矩阵(NGTDM),基于形状的特征提取特征特征(SF)和强度直方图特征(IHF)。我们计算了每个MTV和GBSV之间的Dice系数,以测量细分精度。接近1的系数值表示一致性高,接近0的系数表示一致性低。我们通过计算平均百分比差异( d ) MTV1-MTV2,MTV1-GBSV,MTV2-GBSV;灰度级:64-32、64-128和64-256;重建算法:OSEM-FORE-OSEM,OSEM-FOREFBP和OSEM-3DRP)。我们使用了 | d ¯ | 作为放射性特征可重复性水平的度量,其中任何特征均得分 | d | ± SD≤| 25 |%±35%被认为是可重现的。我们使用Bland–Altman分析来评估放射线特征的平均值,标准偏差(SD)和重现性上限/下限(U / LRL),以响应每个测试参数的变化。此外,我们提出了U / LRL作为对再现性水平进行分类的方法:高-±1%≤U / LRL≤±30%;中级-±30%

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号