首页> 美国卫生研究院文献>Evolutionary Applications >Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea
【2h】

Seascape genetics and biophysical connectivity modelling support conservation of the seagrass Zostera marina in the Skagerrak–Kattegat region of the eastern North Sea

机译:海景遗传学和生物物理连通性模型支持北海东部Skagerrak–Kattegat地区海草Zostera码头的保护

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Maintaining and enabling evolutionary processes within meta‐populations are critical to resistance, resilience and adaptive potential. Knowledge about which populations act as sources or sinks, and the direction of gene flow, can help to focus conservation efforts more effectively and forecast how populations might respond to future anthropogenic and environmental pressures. As a foundation species and habitat provider, Zostera marina (eelgrass) is of critical importance to ecosystem functions including fisheries. Here, we estimate connectivity of Z. marina in the Skagerrak–Kattegat region of the North Sea based on genetic and biophysical modelling. Genetic diversity, population structure and migration were analysed at 23 locations using 20 microsatellite loci and a suite of analytical approaches. Oceanographic connectivity was analysed using Lagrangian dispersal simulations based on contemporary and historical distribution data dating back to the late 19th century. Population clusters, barriers and networks of connectivity were found to be very similar based on either genetic or oceanographic analyses. A single‐generation model of dispersal was not realistic, whereas multigeneration models that integrate stepping‐stone dispersal and extant and historic distribution data were able to capture and model genetic connectivity patterns well. Passive rafting of flowering shoots along oceanographic currents is the main driver of gene flow at this spatial–temporal scale, and extant genetic connectivity strongly reflects the “ghost of dispersal past“ sensu Benzie, . The identification of distinct clusters, connectivity hotspots and areas where connectivity has become limited over the last century is critical information for spatial management, conservation and restoration of eelgrass.
机译:在种群中维持和促进进化过程对于抵抗,适应力和适应能力至关重要。有关哪些种群充当来源或汇聚点以及基因流动方向的知识可以帮助更有效地集中保护工作,并预测种群如何应对未来的人为和环境压力。作为基础物种和栖息地的提供者,海带藻(Zostera marina)对包括渔业在内的生态系统功能至关重要。在这里,我们根据遗传和生物物理模型估算了北海Skagerrak–Kattegat地区的Z.marina的连通性。使用20个微卫星基因座和一套分析方法在23个地点分析了遗传多样性,种群结构和迁移。使用拉格朗日散布模拟对海洋学连通性进行了分析,该模拟基于可追溯到19世纪末的当代和历史分布数据。根据遗传或海洋学分析,发现人口集群,障碍和连通网络非常相似。单代散布模型不切实际,而结合了踏脚石散布和现存及历史分布数据的多代模型能够很好地捕获和建模遗传连通性模式。在这种时空尺度上,花枝的被动漂流是海洋中基因流动的主要驱动力,而现有的遗传连通性强烈地反映了“过去的散乱” sensu Benzie。在上个世纪中,确定不同的集群,连通性热点和连通性受到限制的区域,对于鳗草的空间管理,保护和恢复至关重要。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号