首页> 美国卫生研究院文献>Advanced Science >High‐Performance Flexible Quasi‐Solid‐State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen‐Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures
【2h】

High‐Performance Flexible Quasi‐Solid‐State Supercapacitors Realized by Molybdenum Dioxide@Nitrogen‐Doped Carbon and Copper Cobalt Sulfide Tubular Nanostructures

机译:二氧化钼@氮掺杂的碳和硫化铜钴铜管状纳米结构实现的高性能柔性准固态超级电容器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Flexible quasi‐/all‐solid‐state supercapacitors have elicited scientific attention to fulfill the explosive demand for portable and wearable electronic devices. However, the use of electrode materials faces several challenges, such as intrinsically slow kinetics and volume change upon cycling, which impede the energy output and electrochemical stability. This study presents well‐aligned molybdenum dioxide@nitrogen‐doped carbon (MoO2@NC) and copper cobalt sulfide (CuCo2S4) tubular nanostructures grown on flexible carbon fiber for use as electrode materials in supercapacitors. Benefiting from the chemically stable interfaces, affluent active sites, and efficient 1D electron transport, the MoO2@NC and CuCo2S4 nanostructures integrated on conductive substrates deliver excellent electrochemical performance. A flexible quasi‐solid‐state asymmetric supercapacitor composed of MoO2@NC as the negative electrode and CuCo2S4 as the positive electrode achieves an ultrahigh energy density of 65.1 W h kg−1 at a power density of 800 W kg−1 and retains a favorable energy density of 27.6 W h kg−1 at an ultrahigh power density of 12.8 kW kg−1. Moreover, it demonstrates good cycling performance with 90.6% capacitance retention after 5000 cycles and excellent mechanical flexibility by enabling 92.2% capacitance retention after 2000 bending cycles. This study provides an effective strategy to develop electrode materials with superior electrochemical performance for flexible supercapacitors.
机译:柔性准/全固态超级电容器引起了科学的关注,以满足对便携式和可穿戴电子设备的爆炸性需求。然而,电极材料的使用面临若干挑战,例如本质上缓慢的动力学和循环时的体积变化,这阻碍了能量输出和电化学稳定性。这项研究提出了在柔性碳纤维上生长的排列良好的二氧化钼@氮掺杂碳(MoO2 @ NC)和硫化铜钴(CuCo2S4)管状纳米结构,用作超级电容器的电极材料。得益于化学稳定的界面,丰富的活性位点和有效的一维电子传输,集成在导电基材上的MoO2 @ NC和CuCo2S4纳米结构具有出色的电化学性能。由MoO2 @ NC作为负电极和CuCo2S4作为正电极组成的柔性准固态非对称超级电容器在800 W的功率密度下实现了65.1 W h kg -1 的超高能量密度kg -1 并在12.8 kW kg -1 的超高功率密度下保持27.6 W h kg -1 的有利能量密度。此外,它还表现出良好的循环性能,在5000次循环后保持90.6%的电容,并在2000次弯曲循环后实现92.2%的电容保持,具有出色的机械柔韧性。这项研究为开发具有优异电化学性能的柔性超级电容器电极材料提供了有效策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号