首页> 美国卫生研究院文献>MicrobiologyOpen >Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H2 and CO2 under different temperature conditions
【2h】

Comparative proteomic analysis of Methanothermobacter thermautotrophicus reveals methane formation from H2 and CO2 under different temperature conditions

机译:甲烷甲烷杆菌自养营养菌的蛋白质组学比较分析表明甲烷是由H2和CO形成的2在不同温度条件下

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growth of all methanogens is limited to a specific temperature range. However, Methanothermobacter thermautotrophicus can be found in a variety of natural and artificial environments, the temperatures of which sometimes even exceed the temperature growth ranges of thermophiles. As a result, the extent to which methane production and survival are affected by temperature remains unclear. To investigate the mechanisms of methanogenesis that Archaea have evolved to cope with drastic temperature shifts, the responses of Methanothermobacter thermautotrophicus to temperature were investigated under a high temperature growth (71°C) and cold shock (4°C) using Isobaric tags for relative and absolute quantitation (iTRAQ). The results showed that methane formation is decreased and that protein folding and degradation are increased in both high‐ and low‐temperature treatments. In addition, proteins predicted to be involved in processing environmental information processing and in cell membrane/wall/envelope biogenesis may play key roles in affecting methane formation and enhancing the response of M. thermautotrophicus to temperature stress. Analysis of the genomic locations of the genes corresponding to these temperature‐dependent proteins predicted that 77 of the genes likely to form 32 gene clusters. Here, we assess the response of M. thermautotrophicus to different temperatures and provide a new level of understanding of methane formation and cellular putative adaptive responses.
机译:所有产甲烷菌的生长都限制在特定的温度范围内。然而,甲烷嗜热甲烷热自养菌可以在多种自然和人工环境中发现,其温度有时甚至超过嗜热菌的温度增长范围。结果,甲烷产量和存活率受温度影响的程度仍不清楚。为了研究古生菌已进化为应对剧烈温度变化的甲烷生成机理,我们使用等压标记通过相对温度和相对温度在高温生长(71°C)和冷休克(4°C)下研究了嗜热甲烷杆菌对温度的响应。绝对定量(iTRAQ)。结果表明,在高温和低温处理中,甲烷的形成均减少,蛋白质折叠和降解增加。此外,预计参与处理环境信息处理以及细胞膜/壁/包膜生物发生的蛋白质可能在影响甲烷形成和增强嗜热毁丝球菌对温度胁迫的反应中起关键作用。对与这些温度依赖性蛋白相对应的基因的基因组位置进行分析后,预测有77个基因可能形成32个基因簇。在这里,我们评估了嗜热毁丝球菌对不同温度的反应,并提供了对甲烷形成和细胞推定的适应性反应的新认识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号