首页> 美国卫生研究院文献>Nucleic Acids Research >Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design
【2h】

Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design

机译:降低细菌毒性的工程dCas9:对遗传电路设计的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large synthetic genetic circuits require the simultaneous expression of many regulators. Deactivated Cas9 (dCas9) can serve as a repressor by having a small guide RNA (sgRNA) direct it to bind a promoter. The programmability and specificity of RNA:DNA basepairing simplifies the generation of many orthogonal sgRNAs that, in theory, could serve as a large set of regulators in a circuit. However, dCas9 is toxic in many bacteria, thus limiting how high it can be expressed, and low concentrations are quickly sequestered by multiple sgRNAs. Here, we construct a non-toxic version of dCas9 by eliminating PAM (protospacer adjacent motif) binding with a R1335K mutation (dCas9*) and recovering DNA binding by fusing it to the PhlF repressor (dCas9*_PhlF). Both the 30 bp PhlF operator and 20 bp sgRNA binding site are required to repress a promoter. The larger region required for recognition mitigates toxicity in Escherichia coli, allowing up to 9600 ± 800 molecules of dCas9*_PhlF per cell before growth or morphology are impacted, as compared to 530 ± 40 molecules of dCas9. Further, PhlF multimerization leads to an increase in average cooperativity from n = 0.9 (dCas9) to 1.6 (dCas9*_PhlF). A set of 30 orthogonal sgRNA–promoter pairs are characterized as NOT gates; however, the simultaneous use of multiple sgRNAs leads to a monotonic decline in repression and after 15 are co-expressed the dynamic range is <10-fold. This work introduces a non-toxic variant of dCas9, critical for its use in applications in metabolic engineering and synthetic biology, and exposes a limitation in the number of regulators that can be used in one cell when they rely on a shared resource.
机译:大型合成遗传回路需要同时表达许多调节子。失活的Cas9(dCas9)可以通过使小引导RNA(sgRNA)指导其结合启动子来充当阻遏物。 RNA:DNA碱基对的可编程性和特异性简化了许多正交sgRNA的产生,从理论上讲,它们可以充当电路中的大量调节子。但是,dCas9在许多细菌中都具有毒性,因此限制了它的表达量,并且低浓度被多种sgRNA快速隔离。在这里,我们通过消除与R1335K突变(dCas9 *)结合的PAM(原间隔子相邻基序)并通过将其融合至PhlF阻遏物(dCas9 * _PhlF)来恢复DNA结合来构建dCas9的无毒版本。需要30 bp的PhlF操纵子和20 bp的sgRNA结合位点来抑制启动子。识别所需的较大区域可减轻大肠杆菌的毒性,与530±40分子的dCas9分子相比,在生长或形态受到影响之前,每个细胞最多允许9600±800分子的dCas9 * _PhlF。此外,PhlF多聚导致平均协同性从n = 0.9(dCas9)增加到1.6(dCas9 * _PhlF)。一组30个正交的sgRNA-启动子对的特征是非门。但是,同时使用多个sgRNA会导致抑制的单调下降,并且在共表达15个后,动态范围小于10倍。这项工作介绍了dCas9的一种无毒变体,这对于在代谢工程和合成生物学中的应用至关重要,并且暴露了当一个细胞依赖共享资源时可以在一个细胞中使用的调节子数量的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号