首页> 美国卫生研究院文献>Journal of Neurophysiology >Neural Circuits: Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments
【2h】

Neural Circuits: Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments

机译:神经回路:多通道电生理实验中串扰效应的大小和行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern neurophysiological experiments frequently involve multiple channels separated by very small distances. A unique methodological concern for multiple-electrode experiments is that of capacitive coupling (cross-talk) between channels. Yet the nature of the cross-talk recording circuit is not well known in the field, and the extent to which it practically affects neurophysiology experiments has never been fully investigated. Here we describe a simple electrical circuit model of simultaneous recording and stimulation with two or more channels and experimentally verify the model using ex vivo brain slice and in vivo whole-brain preparations. In agreement with the model, we find that cross-talk amplitudes increase nearly linearly with the impedance of a recording electrode and are larger for higher frequencies. We demonstrate cross-talk contamination of action potential waveforms from intracellular to extracellular channels, which is observable in part because of the different orders of magnitude between the channels. This contamination is electrode impedance-dependent and matches predictions from the model. We use recently published parameters to simulate cross-talk in high-density multichannel extracellular recordings. Cross-talk effectively spatially smooths current source density (CSD) estimates in these recordings and induces artefactual phase shifts where underlying voltage gradients occur; however, these effects are modest. We show that the effects of cross-talk are unlikely to affect most conclusions inferred from neurophysiology experiments when both originating and receiving electrode record signals of similar magnitudes. We discuss other types of experiments and analyses that may be susceptible to cross-talk, techniques for detecting and experimentally reducing cross-talk, and implications for high-density probe design.>NEW & NOTEWORTHY We develop and experimentally verify an electrical circuit model describing cross-talk that necessarily occurs between two channels. Recorded cross-talk increased with electrode impedance and signal frequency. We recorded cross-talk contamination of spike waveforms from intracellular to extracellular channels. We simulated high-density multichannel extracellular recordings and demonstrate spatial smoothing and phase shifts that cross-talk enacts on CSD measurements. However, when channels record similar-magnitude signals, effects are modest and unlikely to affect most conclusions.
机译:现代神经生理学实验经常涉及多个通道,这些通道之间的距离很小。多电极实验的唯一方法论问题是通道之间的电容耦合(串扰)。然而,串扰记录电路的性质在本领域中并不为人所知,并且其在实际上影响神经生理学实验的程度尚未得到充分研究。在这里,我们描述了同时记录和通过两个或多个通道进行刺激的简单电路模型,并使用离体脑切片和体内全脑制剂进行了实验验证。与模型一致,我们发现串扰幅度几乎随记录电极的阻抗线性增长,而对于较高频率则更大。我们展示了从细胞内通道到细胞外通道的动作电位波形的串扰污染,这在一定程度上是可以观察到的,因为通道之间的数量级不同。这种污染取决于电极阻抗,并且与模型的预测相匹配。我们使用最近发布的参数来模拟高密度多通道细胞外录音中的串扰。串扰可有效地在空间上平滑这些记录中的电流源密度(CSD)估计值,并在出现基础电压梯度的地方引起人为的相移;但是,这些影响不大。我们表明,当源电极和接收电极记录的信号幅度相似时,串扰的影响不太可能影响从神经生理学实验得出的大多数结论。我们讨论了可能会受到串扰影响的其他类型的实验和分析,用于检测和减少串扰的技术以及对高密度探针设计的影响。> NEW&NOTEWORTHY 验证描述两个通道之间必然发生的串扰的电路模型。记录的串扰随着电极阻抗和信号频率的增加而增加。我们记录了从细胞内通道到细胞外通道的尖峰波形的串扰污染。我们模拟了高密度的多通道细胞外录音,并演示了串扰作用于CSD测量的空间平滑和相移。但是,当通道记录类似幅度的信号时,影响适中,不太可能影响大多数结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号