首页> 美国卫生研究院文献>Journal of Neurophysiology >50 Years of Modeling Neural Activity: Celebrating Jack Cowans Career: Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons
【2h】

50 Years of Modeling Neural Activity: Celebrating Jack Cowans Career: Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons

机译:神经活动建模的50年:庆祝Jack Cowan的职业生涯:预测黑质网状神经元对抑制性突触输入的反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The changes in firing probability produced by a synaptic input are usually visualized using the poststimulus time histogram (PSTH). It would be useful if postsynaptic firing patterns could be predicted from patterns of afferent synaptic activation, but attempts to predict the PSTH from synaptic potential waveforms using reasoning based on voltage trajectory and spike threshold have not been successful, especially for inhibitory inputs. We measured PSTHs for substantia nigra pars reticulata (SNr) neurons inhibited by optogenetic stimulation of striato-nigral inputs or by matching artificial inhibitory conductances applied by dynamic clamp. The PSTH was predicted by a model based on each SNr cell’s phase-resetting curve (PRC). Optogenetic activation of striato-nigral input or artificial synaptic inhibition produced a PSTH consisting of an initial depression of firing followed by oscillatory increases and decreases repeating at the SNr cell’s baseline firing rate. The phase resetting model produced PSTHs closely resembling the cell data, including the primary pause in firing and the oscillation. Key features of the PSTH, including the onset rate and duration of the initial inhibitory phase, and the subsequent increase in firing probability could be explained from the characteristic shape of the SNr cell’s PRC. The rate of damping of the late oscillation was explained by the influence of asynchronous phase perturbations producing firing rate jitter and wander. Our results demonstrate the utility of phase-resetting models as a general method for predicting firing in spontaneously active neurons and their value in interpretation of the striato-nigral PSTH.>NEW & NOTEWORTHY The coupling of patterned presynaptic input to sequences of postsynaptic firing is a Gordian knot, complicated by the multidimensionality of neuronal state and the diversity of potential initial states. Even so, it is fundamental for even the simplest understanding of network dynamics. We show that a simple phase-resetting model constructed from experimental measurements can explain and predict the sequence of spike rate changes following synaptic inhibition of an oscillating basal ganglia output neuron.
机译:通常使用刺激后时间直方图(PSTH)可视化由突触输入产生的触发概率的变化。如果可以根据传入突触激活的模式来预测突触后触发模式,但尝试使用基于电压轨迹和尖峰阈值的推理从突触电位波形预测PSTH的尝试并不成功,特别是对于抑制性输入而言,将很有用。我们测量了纹状体-黑色输入的光遗传学刺激或匹配了动态钳制施加的人工抑制电导所抑制的黑质网状(SNr)神经元的PSTH。根据每个SNr小区的相位重置曲线(PRC),模型可以预测PSTH。纹状体-黑色输入的光遗传激活或人工突触抑制产生了PSTH,该PSTH包括最初的放电抑制和随后的SNr细胞基线发射速率重复的振荡增加和减少。相位重置模型产生的PSTH非常类似于单元数据,包括发射和振荡中的主要暂停。 PSTH的关键特征,包括初始抑制阶段的发生率和持续时间,以及随后发射概率的增加,可以通过SNr细胞PRC的特征形状来解释。延迟相位的衰减率是由异步相位扰动的影响来解释的,该相位扰动会产生触发速率抖动和漂移。我们的结果证明了相变模型作为预测自发活动神经元放电的通用方法的实用性,以及它们在纹状体-黑色PSTH解释中的价值。> NEW&NOTEWORTHY 突触后放电的序列是一个高尔迪结,并伴有神经元状态的多维性和潜在初始状态的多样性。即使这样,对于最简单的网络动力学理解也是基础。我们表明,从实验测量结果构建的简单的相位重置模型可以解释和预测突触基神经节输出神经元的突触抑制后的峰值速率变化的序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号