首页> 美国卫生研究院文献>Journal of Neurophysiology >Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings
【2h】

Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings

机译:实验和计算证据表明NaV1.6在牵张敏感结直肠传入末端的突触萌发中起重要作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stretch-sensitive afferents comprise ∼33% of the pelvic nerve innervation of mouse colorectum, which are activated by colorectal distension and encode visceral nociception. Stretch-sensitive colorectal afferent endings respond tonically to stepped or ramped colorectal stretch, whereas dissociated colorectal dorsal root ganglion neurons generally fail to spike repetitively upon stepped current stimulation. The present study investigated this difference in the neural encoding characteristics between the soma and afferent ending using pharmacological approaches in an in vitro mouse colon-nerve preparation and complementary computational simulations. Immunohistological staining and Western blots revealed the presence of voltage-gated sodium channel (NaV) 1.6 and NaV1.7 at sensory neuronal endings in mouse colorectal tissue. Responses of stretch-sensitive colorectal afferent endings were significantly reduced by targeting NaV1.6 using selective antagonists (μ-conotoxin GIIIa and μ-conotoxin PIIIa) or tetrodotoxin. In contrast, neither selective NaV1.8 (A803467) nor NaV1.7 (ProTX-II) antagonists attenuated afferent responses to stretch. Computational simulation of a colorectal afferent ending that incorporated independent Markov models for NaV1.6 and NaV1.7, respectively, recapitulated the experimental findings, suggesting a necessary role for NaV1.6 in encoding tonic spiking by stretch-sensitive afferents. In addition, computational simulation of a dorsal root ganglion soma showed that, by adding a NaV1.6 conductance, a single-spiking neuron was converted into a tonic spiking one. These results suggest a mechanism/channel to explain the difference in neural encoding characteristics between afferent somata and sensory endings, likely caused by differential expression of ion channels (e.g., NaV1.6) at different parts of the neuron.
机译:牵张敏感的传入神经约占小鼠结肠直肠盆腔神经支配的33%,这些受结肠直肠扩张激活并编码内脏伤害感受。伸展敏感的结直肠传入末端对阶梯状或倾斜的结直肠伸展具有声调响应,而离体的结直肠背根神经节神经元通常在阶梯状电流刺激下无法反复出现尖峰。本研究使用药理学方法在体外小鼠结肠神经准备和补充计算模拟中研究了躯体和传入末梢之间神经编码特性的差异。免疫组织学染色和蛋白质印迹揭示了小鼠结肠直肠组织感觉神经元末端存在电压门控钠通道(NaV)1.6和NaV1.7。通过使用选择性拮抗剂(μ-芋螺毒素GIIIa和μ-芋螺毒素PIIIa)或河豚毒素靶向NaV1.6,可显着降低拉伸敏感的结直肠传入末端的反应。相反,选择性NaV1.8(A803467)和NaV1.7(ProTX-II)拮抗剂均不能减弱对拉伸的传入反应。分别结合了NaV1.6和NaV1.7的独立马尔可夫模型的结直肠传入传入末端的计算模拟概括了实验结果,表明NaV1.6在编码拉伸敏感传入传入的强直突中起必要作用。此外,对背根神经节躯体的计算仿真表明,通过添加NaV1.6电导,单峰神经元被转化为强直峰神经元。这些结果表明了一种机制/通道来解释传入的躯体和感觉末梢之间的神经编码特性的差异,这可能是由于神经元不同部位的离子通道(例如NaV1.6)的差异表达引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号