首页> 美国卫生研究院文献>Scientific Reports >Lithographically Defined Three-dimensional Pore-patterned Carbon with Nitrogen Doping for High-Performance Ultrathin Supercapacitor Applications
【2h】

Lithographically Defined Three-dimensional Pore-patterned Carbon with Nitrogen Doping for High-Performance Ultrathin Supercapacitor Applications

机译:用于高性能超薄超级电容器应用的氮掺杂的光刻定义的三维孔图案碳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Supercapacitors that exhibit long cycle lives and fast charge/discharge rates are a promising energy-storage technology for next-generation mobile or wearable electronic systems. A great challenge facing the fabrication of ultrathin supercapacitor components, specifically their porous electrodes, is whether such components can be integrated with the fabrication of electronic devices, i.e., semiconductor fabrication processes. Here, we introduce the lithographic fabrication of micrometre-thick, submicrometre-pore-patterned carbon for supercapacitor electrodes. The pore patterns designed by multi-beam interference lithography and direct carbonisation of the photoresist pattern produced pore-patterned carbon films. A facile doping process was subsequently employed to introduce nitrogen atoms into the carbon, which was intended to further enhance the carbon's capacitive properties. Specifically, during these fabrication steps, we developed an approach that uses a supporting shell on the surface of the pore patterns to maintain their structural integrity. The nitrogen-doped, pore-patterned carbon electrodes exhibited an areal specific capacitance of 32.7 mF/cm2 at 0.5 mA/cm2 when used as supercapacitor electrodes, which is approximately 20 times greater than that of commercially available MWCNT films measured under the same conditions.
机译:具有长循环寿命和快速充电/放电速率的超级电容器是下一代移动或可穿戴电子系统的有前途的储能技术。超薄超级电容器组件,特别是其多孔电极的制造面临的巨大挑战是,这些组件是否可以与电子器件的制造(即半导体制造工艺)集成在一起。在这里,我们介绍了用于超级电容器电极的微米级,亚微米级孔图案化碳的光刻工艺。通过多束干涉光刻和光致抗蚀剂图案的直接碳化设计的孔图案产生了孔图案的碳膜。随后采用一种简单的掺杂工艺将氮原子引入碳中,目的是进一步增强碳的电容性。具体来说,在这些制造步骤中,我们开发了一种方法,该方法在孔图案的表面上使用支撑壳来保持其结构完整性。当用作超级电容器电极时,氮掺杂的孔状碳电极在0.5μmA/ cm 2 时表现出32.7μmF/ cm 2 的面积比电容。在相同条件下测量,比市售MWCNT膜大20倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号