首页> 美国卫生研究院文献>Scientific Reports >Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms
【2h】

Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms

机译:基于热原子的两光子跃迁的直接频率梳光频率标准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optical clocks have been the focus of science and technology research areas due to their capability to provide highest frequency accuracy and stability to date. Their superior frequency performance promises significant advances in the fields of fundamental research as well as practical applications including satellite-based navigation and ranging. In traditional optical clocks, ultrastable optical cavities, laser cooling and particle (atoms or a single ion) trapping techniques are employed to guarantee high stability and accuracy. However, on the other hand, they make optical clocks an entire optical tableful of equipment, and cannot work continuously for a long time; as a result, they restrict optical clocks used as very convenient and compact time-keeping clocks. In this article, we proposed, and experimentally demonstrated, a novel scheme of optical frequency standard based on comb-directly-excited atomic two-photon transitions. By taking advantage of the natural properties of the comb and two-photon transitions, this frequency standard achieves a simplified structure, high robustness as well as decent frequency stability, which promise widespread applications in various scenarios.
机译:光学时钟由于具有迄今为止提供最高频率精度和稳定性的能力而一直是科学技术研究领域的重点。它们出色的频率性能有望在基础研究以及包括基于卫星的导航和测距在内的实际应用领域取得重大进展。在传统的光钟中,采用超稳定的光腔,激光冷却和粒子(原子或单个离子)捕获技术来确保高稳定性和准确性。然而,另一方面,它们使光钟成为整个光表设备,并且不能长时间连续工作;结果,它们将光学时钟限制为非常方便和紧凑的计时时钟。在本文中,我们提出并通过实验证明了一种基于梳齿直接激发的原子双光子跃迁的光频率标准的新方案。通过利用梳子和双光子跃迁的自然特性,该频率标准实现了简化的结构,高鲁棒性和良好的频率稳定性,这有望在各种情况下得到广泛应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号