首页> 美国卫生研究院文献>Scientific Reports >Quantifying electron transfer reactions in biological systems: what interactions play the major role?
【2h】

Quantifying electron transfer reactions in biological systems: what interactions play the major role?

机译:量化生物系统中的电子转移反应:什么相互作用起主要作用?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome–a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
机译:各种生物过程都涉及将能量转换为可用于化学转化的形式,并且本质上是量子力学的。这样的过程包括光吸收,激发电子态形成,激发能量转移,电子和质子隧穿,其例如发生在光合作用,细胞呼吸,DNA修复以及可能的磁场感测中。量子生物学使用计算来根据量子力学效应对生物相互作用进行建模,并且由于量子物理学和生物学之间的融合,它在过去的十年中得到了初步发展。本文从理论角度考虑了生物过程中的电子转移。即就量子力学和半经典模型而言。我们系统地描述了运动中的电子与其生物环境之间的相互作用,以推论电子转移反应的驱动力,并建立起在推动电子中起主要作用的那些相互作用。建议的方法被视为处理生物系统中电子转移事件的一般方法,我们利用它来具体描述拟南芥隐色色素中的电子传递反应。这是一种信号转导的感光蛋白,由于其可能的功能而最近变得有吸引力。生物磁感受器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号