首页> 美国卫生研究院文献>Scientific Reports >Ultrasmall all-optical plasmonic switch and its application to superresolution imaging
【2h】

Ultrasmall all-optical plasmonic switch and its application to superresolution imaging

机译:超小型全光等离子体开关及其在超分辨率成像中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because of their exceptional local-field enhancement and ultrasmall mode volume, plasmonic components can integrate photonics and electronics at nanoscale, and active control of plasmons is the key. However, all-optical modulation of plasmonic response with nanometer mode volume and unity modulation depth is still lacking. Here we show that scattering from a plasmonic nanoparticle, whose volume is smaller than 0.001 μm3, can be optically switched off with less than 100 μW power. Over 80% modulation depth is observed, and shows no degradation after repetitive switching. The spectral bandwidth approaches 100 nm. The underlying mechanism is suggested to be photothermal effects, and the effective single-particle nonlinearity reaches nearly 10−9 m2/W, which is to our knowledge the largest record of metallic materials to date. As a novel application, the non-bleaching and unlimitedly switchable scattering is used to enhance optical resolution to λ/5 (λ/9 after deconvolution), with 100-fold less intensity requirement compared to similar superresolution techniques. Our work not only opens up a new field of ultrasmall all-optical control based on scattering from a single nanoparticle, but also facilitates superresolution imaging for long-term observation.
机译:由于其非凡的局部场增强和超小模式体积,等离激元组件可以在纳米级集成光子学和电子学,而对等离激元的主动控制是关键。然而,仍然缺乏具有纳米模式体积和统一调制深度的等离子体响应的全光调制。在这里,我们表明,体积小于0.001μm 3 的等离子体纳米粒子的散射可以用不到100μμW的功率被光学截止。观察到超过80%的调制深度,并且在重复切换后没有降低。光谱带宽接近100 nm。潜在的机理被认为是光热效应,有效的单粒子非线性接近10 −9 m 2 / W,据我们所知是最大的记录。迄今为止的金属材料。作为一种新颖的应用,不可漂白且可无限切换的散射用于将光学分辨率提高到λ/ 5(解卷积后为λ/ 9),与类似的超分辨率技术相比,其强度要求低100倍。我们的工作不仅开辟了基于单个纳米粒子散射的超小型全光学控制的新领域,而且还促进了用于长期观察的超分辨率成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号