首页> 美国卫生研究院文献>Scientific Reports >Organic/Organic Heterointerface Engineering to Boost Carrier Injection in OLEDs
【2h】

Organic/Organic Heterointerface Engineering to Boost Carrier Injection in OLEDs

机译:有机/有机异质界面工程可促进OLED中的载流子注入

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate dynamic formation of nanosheet charge accumulations by heterointerface engineering in double injection layer (DIL) based organic light emitting diodes (OLEDs). Our experimental results show that the device performance is considerably improved for the DIL device as the result of heterointerface injection layer (HIIL) formation, in comparison to reference devices, namely, the current density is doubled and even quadrupled and the turn-on voltage is favorably halved, to 3.7 V, which is promising for simple small-molecule OLEDs. The simulation reveals the (i) formation of dynamic p-type doping (DPD) region which treats the quasi Fermi level at the organic/electrode interface, and (ii) formation of dynamic dipole layer (DDL) and the associated electric field at the organic/organic interface which accelerates the ejection of the carriers and their transference to the successive layer. HIIL formation proposes alternate scenarios for device design. For instance, no prerequisite for plasma treatment of transparent anode electrode, our freedom in varying the thicknesses of the organic layers between 10 nm and 60 nm for the first layer and between 6 nm and 24 nm for the second layer. The implications of the present work give insight into the dynamic phenomena in OLEDs and facilitates the development of their inexpensive fabrication for lighting applications.
机译:我们通过基于双注入层(DIL)的有机发光二极管(OLED)中的异质界面工程研究了纳米片电荷累积的动态形成。我们的实验结果表明,与参考器件相比,由于形成了异质注入层(HIIL),DIL器件的器件性能得到了显着改善,即电流密度增加了一倍甚至四倍,并且开启电压为最好减半至3.7 V,这对于简单的小分子OLED很有希望。该模拟揭示了(i)在有机/电极界面处形成准费米能级的动态p型掺杂(DPD)区域的形成,以及(ii)动态偶极层(DDL)和相关电场的形成。有机/有机界面,可加快载体的喷射及其向后续层的转移。 HIIL的形成为设备设计提出了替代方案。例如,对透明阳极电极进行等离子体处理没有任何先决条件,我们可以自由改变有机层厚度,第一层在10 nm至60 nm之间,第二层在6 nm至24 nm之间。本工作的含义使人们深入了解了OLED中的动态现象,并促进了其廉价的照明应用制造的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号