首页> 美国卫生研究院文献>Scientific Reports >Three-Dimensional Printed Electrode and Its Novel Applications in Electronic Devices
【2h】

Three-Dimensional Printed Electrode and Its Novel Applications in Electronic Devices

机译:三维印刷电极及其在电子设备中的新应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg−1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 μA) and a lower detection limit (0.05 μM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.
机译:三维(3D)打印技术由于能够创建低成本3D打印平台而为各种应用提供了一种新颖的材料制造方法。在这项研究中,可印刷的基于石墨烯的导电丝被用于使用商用3D打印机创建一系列3D打印电极(3DE)。这种印刷技术提供了一种简单且低成本的方法,从而无需对产品进行异地修饰和后处理。 3DEs的导电性质通过电化学或物理方法为电化学活性纳米材料(例如石墨烯,聚吡咯和硫化镉)提供了许多沉积平台。为了提供概念验证,对这些3DE进行了物理化学和电化学评估,并熟练地制成了超级电容器和光电化学传感器。所制造的超级电容器具有良好的电容性能,比电容为98.37 Fg -1 。另外,这些3DEs被制造成光电化学传感平台。与ITO / FTO玻璃电极相比,它们的光电流响应超出了预期(〜724.1μA),并且检测限较低(0.05μM)。通过随后修改打印材料和电极体系结构,此3D打印方法可以基于概念设计为能源设备提供便捷,快速的制造过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号