首页> 美国卫生研究院文献>Scientific Reports >Non-conventional graphene superlattices as electron band-pass filters
【2h】

Non-conventional graphene superlattices as electron band-pass filters

机译:非常规石墨烯超晶格作为电子带通滤光片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electron transmission through different non-conventional (non-uniform barrier height) gated and gapped graphene superlattices (GSLs) is studied. Linear, Gaussian, Lorentzian and Pöschl-Teller superlattice potential profiles have been assessed. A relativistic description of electrons in graphene as well as the transfer matrix method have been used to obtain the transmission properties. We find that it is not possible to have perfect or nearly perfect pass bands in gated GSLs. Regardless of the potential profile and the number of barriers there are remanent oscillations in the transmission bands. On the contrary, nearly perfect pass bands are obtained for gapped GSLs. The Gaussian profile is the best option when the number of barriers is reduced, and there is practically no difference among the profiles for large number of barriers. We also find that both gated and gapped GSLs can work as omnidirectional band-pass filters. In the case of gated Gaussian GSLs the omnidirectional range goes from −50° to 50° with an energy bandwidth of 55 meV, while for gapped Gaussian GSLs the range goes from −80° to 80° with a bandwidth of 40 meV. Here, it is important that the energy range does not include remanent oscillations. On the light of these results, the hole states inside the barriers of gated GSLs are not beneficial for band-pass filtering. So, the flatness of the pass bands is determined by the superlattice potential profile and the chiral nature of the charge carriers in graphene. Moreover, the width and the number of electron pass bands can be modulated through the superlattice structural parameters. We consider that our findings can be useful to design electron filters based on non-conventional GSLs.
机译:研究了通过不同的非常规(非均匀势垒高度)门控和间隙石墨烯超晶格(GSLs)的电子传输。已经评估了线性,高斯,洛伦兹和珀施-泰勒超晶格势分布。石墨烯中电子的相对论描述以及转移矩阵方法已用于获得透射性质。我们发现,门控GSL中不可能有完美或接近完美的通带。不管势能曲线和势垒的数量如何,传输频带中都会有剩余的振荡。相反,对于有间隙的GSL,获得了近乎完美的通带。当减少障碍的数量时,高斯轮廓是最佳选择,并且对于大量的障碍,轮廓之间几乎没有区别。我们还发现,门控GSL和间隙GSL都可以用作全向带通滤波器。对于门控高斯GSL,全向范围从−50°到50°,能量带宽为55 meV,而对于有间隙的高斯GSL,范围从-80°至80°,带宽为40 ofmeV。在此,重要的是,能量范围不包括剩余的振荡。根据这些结果,门控GSL的势垒内部的空穴状态不利于带通滤波。因此,通带的平坦度取决于超晶格电势分布和石墨烯中电荷载流子的手性。此外,可以通过超晶格结构参数来调节电子通带的宽度和数量。我们认为我们的发现对于设计基于非常规GSL的电子滤波器很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号